CTCF is essential for proper mitotic spindle structure and anaphase segregation.

[1]  J. Marko,et al.  A Versatile Micromanipulation Apparatus for Biophysical Assays of the Cell Nucleus , 2022, Cellular and Molecular Bioengineering.

[2]  J. Lammerding,et al.  Mechanics and functional consequences of nuclear deformations , 2022, Nature Reviews Molecular Cell Biology.

[3]  G. Gerlitz,et al.  CTCF supports preferentially short lamina-associated domains , 2022, Chromosome Research.

[4]  L. Mirny,et al.  Transcription shapes 3D chromatin organization by interacting with loop extrusion , 2022, bioRxiv.

[5]  Kuan-Chung Su,et al.  The phenotypic landscape of essential human genes , 2021, Cell.

[6]  Sangkyun Cho,et al.  Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate , 2021, bioRxiv.

[7]  Patrick J. Flynn,et al.  Chromatin bridges, not micronuclei, activate cGAS after drug-induced mitotic errors in human cells , 2021, Proceedings of the National Academy of Sciences.

[8]  Dushan N. Wadduwage,et al.  Advances in Chromatin and Chromosome Research: Perspectives from Multiple Fields. , 2020, Molecular cell.

[9]  Yang Lin,et al.  Kinesin-7 CENP-E regulates chromosome alignment and genome stability of spermatogenic cells , 2020, Cell Death Discovery.

[10]  B. Ren,et al.  CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention , 2020, Proceedings of the National Academy of Sciences.

[11]  K. Bloom,et al.  Common Features of the Pericentromere and Nucleolus , 2019, Genes.

[12]  J. Marko,et al.  Chromatin's physical properties shape the nucleus and its functions. , 2019, Current opinion in cell biology.

[13]  Lucas R. Smith,et al.  Nuclear rupture at sites of high curvature compromises retention of DNA repair factors , 2018, The Journal of cell biology.

[14]  M. Inagaki,et al.  Tetraploidy in cancer and its possible link to aging , 2018, Cancer science.

[15]  A. Holland,et al.  The impact of mitotic errors on cell proliferation and tumorigenesis , 2018, Genes & development.

[16]  J. Marko,et al.  Mechanics and buckling of biopolymeric shells and cell nuclei , 2017, bioRxiv.

[17]  J. Marko,et al.  Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus , 2017, Molecular biology of the cell.

[18]  L. Mirny,et al.  Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization , 2017, Cell.

[19]  R. Tjian,et al.  CTCF and cohesin regulate chromatin loop stability with distinct dynamics , 2016, bioRxiv.

[20]  Jan Lammerding,et al.  Nuclear envelope rupture and repair during cancer cell migration , 2016, Science.

[21]  R. Voituriez,et al.  ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death , 2016, Science.

[22]  G. Felsenfeld,et al.  CTCF Recruits Centromeric Protein CENP-E to the Pericentromeric/Centromeric Regions of Chromosomes through Unusual CTCF-Binding Sites. , 2015, Cell reports.

[23]  Stephen S. Taylor,et al.  Cenp-E inhibitor GSK923295: Novel synthetic route and use as a tool to generate aneuploidy , 2015, Oncotarget.

[24]  K. Nagashima,et al.  Chromatin De-Compaction By The Nucleosomal Binding Protein HMGN5 Impairs Nuclear Sturdiness , 2014, Nature Communications.

[25]  K. Bloom,et al.  Individual pericentromeres display coordinated motion and stretching in the yeast spindle , 2013, The Journal of cell biology.

[26]  J. Aubertin,et al.  Fine control of nuclear confinement identifies a threshold deformation leading to lamina rupture and induction of specific genes. , 2012, Integrative biology : quantitative biosciences from nano to macro.

[27]  C. Disteche,et al.  Loss of Maternal CTCF Is Associated with Peri-Implantation Lethality of Ctcf Null Embryos , 2012, PloS one.

[28]  B. Helfand,et al.  Chromosomal regions associated with prostate cancer risk localize to lamin B‐deficient microdomains and exhibit reduced gene transcription , 2012, The Journal of pathology.

[29]  Kerry Bloom,et al.  Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring , 2011, The Journal of cell biology.

[30]  Neysa Nevins,et al.  Antitumor activity of an allosteric inhibitor of centromere-associated protein-E , 2010, Proceedings of the National Academy of Sciences.

[31]  Jesse C. Gatlin,et al.  Condensin regulates the stiffness of vertebrate centromeres. , 2009, Molecular biology of the cell.

[32]  J. V. van Deursen,et al.  CAML loss causes anaphase failure and chromosome missegregation , 2009, Cell cycle.

[33]  S. Ohshima Abnormal mitosis in hypertetraploid cells causes aberrant nuclear morphology in association with H2O2‐induced premature senescence , 2008, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[34]  S. Hannenhalli,et al.  Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development , 2008, Development.

[35]  David J. Reiss,et al.  CTCF physically links cohesin to chromatin , 2008, Proceedings of the National Academy of Sciences.

[36]  Wouter de Laat,et al.  CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. , 2006, Genes & development.

[37]  N. Galjart,et al.  CTCF binding and higher order chromatin structure of the H19 locus are maintained in mitotic chromatin , 2005, The EMBO journal.

[38]  G. Chin,et al.  Gene silencing of CENP-E by small interfering RNA in HeLa cells leads to missegregation of chromosomes after a mitotic delay. , 2004, Molecular biology of the cell.

[39]  R. Renkawitz,et al.  Dynamic association of the mammalian insulator protein CTCF with centrosomes and the midbody. , 2004, Experimental cell research.

[40]  J. Peters,et al.  Cohesin Cleavage by Separase Required for Anaphase and Cytokinesis in Human Cells , 2001, Science.

[41]  M. Yanagida,et al.  Identification of seven new cut genes involved in Schizosaccharomyces pombe mitosis. , 1993, Journal of cell science.