Ecological response syndromes in the flora of southwestern Western Australia: Fire resprouters versus reseeders

Two fire-response syndromes can be described for species of the vegetation of Mediterranean-climate, southwestern Western Australia. Resprouters survive fires as individuals. Reseeders are killed by fire and must reestablish through germination and establishment of seedlings. Of the Western Australian plant families analyzed for fire-response strategies, 50% of the Proteaceae, 50% of the Restionaceae, 45% of the Orchidaceae, and 25% of the Epacridaceae are resprouter species. Within genera of the Proteaceae, the proportions of resprouters includeAdenanthos (56%),Hakea (52%),Dryandra (35%), andGrevillea (31%). WithinBanksia, 49% are resprouters, and it appears that the reseeding syndrome is the derived character in this genus. The proportion of resprouters within southwestern Western Australian plant communities ranges from 66% to 80%. These percentages are generally higher than in more arid parts of Western Australia and in comparable plant communities from other Mediterranean-type climates of the world. The relatively high proportion of resprouters within plant families and within plant communities probably indicates that the Western Australian vegetation experiences a harsher fire stress regime than do other Mediterranean-type climate areas. Western Australian plant communities have their highest diversity in the early years after fire, when the vegetation contains a higher number of reseeding species and individuals. Seed banks are dominated by the seeds of reseeders.There are no basic differences in mean seed mass, viability, or germinability of seeds between resprouting species and reseeding species, but reseeders tend to have narrower optimum germination temperature regimes. Establishment success is related more to seed mass, seedling size, and leaf ecophysiology and morphology than to fire-response strategy. Reseeder seedlings tend to grow faster than do resprouter seedlings. Basic shrub morphology differs, with reseeders generally being umbrella shaped and resprouters urn shaped. Reseeding species most commonly have a shallow, fibrous root system. Resprouters have a massive, deeply penetrating root system. Shoot:root ratios of first-year seedlings and mature plants are higher for reseeders. Resprouter seedlings store starch in root tissue at a much greater rate than do reseeder seedlings. Although the concentrations of essential nutrients in seedlings are not different between fire-response types, reseeders tend to conserve nutrients to a greater extent through leaf retention. Reseeders tend to produce greater numbers of flowers and greater amounts of floral rewards, but the breeding systems, which lead to the higher seed set in reseeders, can vary between strict outcrossing and considerable selfing. Reseeding species are not likely to be wind pollinated. Species survival in a fire-prone environment can involve a wide range of combinations of attributes. It appears that in Western Australian reseeder species the lack of an ability to resprout is compensated for by a number of other structural and functional features.Knowledge of the fire-response strategies of species of southwestern Western Australia can influence fire-regime management, conservation of rare species, and restoration of vegetation after disturbance. Further knowledge of the fire-response strategies of species of the southwestern Western Australian flora should result in better management of natural and restored plant communities of the region.ZusammenfassungEs können zwei Syndrome in bezug auf Waldbrände für Vegetationsarten des mediterranen Klimas im Südwesten Westaustraliens beschrieben werden. Pflanzen, die nach dem Waldbrand wieder austreiben, songenannte “resprouter,” überleben als Individuen. Pflanzen, die vom Feuer vernichtet werden, müssen sich durch Keimung der Samen und des Aufwachsens der Sämlinge neu etablieren (sogenannte “reseeder”). Eine Analyse der Strategien als Reaktion auf Waldbrände ergab für Pflanzenarten in Westaustralien, daß 50% der Proteaceae, 50% der Restionaceae, 45% der Orchidaceae, und 25% der Epacridaceae “resproter” sind. Innerhalb der Familie der Proteaceae sind Pflanzen, die wieder austreiben, anteilsmäßig zu 56% inAdenanthos, zu 52% inHakea, zu 35% inDryandra, und zu 31% inGrevillea vertreten. 49% derBanksia Arten sind “resprouter,” und es erscheint, daß das Syndrom der Wiederausbreitung durch Samen ein abgeleitetes Merkmal in deiser Familie ist. Der Anteil der “resprouter” beträgt in Pflanzengemeinschaften im Südwesten Westaustraliens 66 bis 80%. Diese prozentualen Anteile sind im allgemeinen höher als in mehr wüstenähnlichen Gebieten Westaustraliens und in vergleichbaren Pflanzengemeinschaften anderer mediterraner Klimate. Der relativ hohe Anteil von “resprouter” innerhalb Pflanzenfamilien un Pflanzengemeinschaften ist wahrscheinlich ein Anzeichen dafür, daß die Vegetation in Westaustralien stärker von der Einwirkung des Feuers geprägt ist als andere Gebiete mediterranen Klimas. Westaustralische Pflanzengemeinschaften haben ihren höchsten Grad an Vielfalt in frühen Jahren nach einem Waldbrand, wenn die Vegetation ein hohe Anzahl von Pflanzenarten und Individuen enthält, die “reseeder” sind. Samenbanken dominieren durch Samen von “reseeder.”Es gibt keine grundlegenden Unterschiede zwischen “resprouter”- und “reseeder”-Pflanzen in bezug auf mittlerer Samenmasse, Überlebensfähigkeit oder Keimfähigkeit der Samen. Allerdings neigen die Samen der “reseeder”-Pflanzen zu einem engeren Temperaturoptimum währen der Keimung. Der Erfolg der Landbesiedelung hängt vornehmlich von Samenmasse, Sämlingsgröße und Blattökophysiologie und Morphologie ab und weniger von der Strategie als Reaktion auf Waldbrände. Sämlinge von “reseeder”-Pflanzen wachsen in der Regel schneller als Sämlinge von “resprouter”-Pflanzen. Die grundlegende Buschmorphologie unterscheidet sich im allgemeinen zwischen “reseeder”-Pflanzen, die eine Regenschirmform, und “resprouter”-Pflanzen, die eine Vasenform annehmen. “Reseeder”-Pflanzenarten besitzen zumeist ein flaches, fibriliäres Wurzelsystem. “Resprouter”-Pflanzen besitzen ein massives, tief durchdringendes Wurzelsystem. Trieb: Wurzel-Verhältnisse von einjährigen Sämlingen und ausgewachsenen Pflanzen sind höher für “reseeder”-Pflanzen. “Resprouter”-Sämlinge speichern Stärke im Wurzelgewebe in höherem Maße als “reseeder”-Sämlinge. Obwohl essentielle Nährstoffkonzentrationen in Sämlingen nicht differieren zwischen “reseeder” und “resprouter,” konservieren “reseeder”-Pflanzen, Nährstoffe in größerem Ausmaß durch Blatterhalt. “Reseeder”-Pflanzen neigen zu einer erhöhten Produktion der Blütenanzahl und einer größeren Menge von bestäubten Blüten. Züchtungssysteme hingenen, die zu einer höheren Samenanlage in “reseeder”-Planzen führen, können zwischen strikter Fremdbestäubung und beträchtlicher Selbstbestäubung variieren. Es ist unwahrscheinlich, daß “reseeder”-Pflanzenarten vom Wind bestäubt werden. Das Überleben von Pflanzenarten in einer von Waldbränden geprägten Umwelt kann eine Reihe von Kombinationen von Attributen einschleißen. Es erscheint, daß in westaustralischen “reseeder”-Pflanzenarten der Mangel an der Unfähigkeit, neu auszutreiben, durch eine Anzahl anderer struktureller und funktioneller Merkmale kompensert wird.Kenntnisse der Strategien von Pflanzen im Südwesten Westaustraliens gegen Waldbrände können das Feuermanagement Regime, die Erhaltung seltener Arten und die Erneuerung der Vegetation nach einer Störung beeinflussen. Zusälzliche Kenntnisse der Strategien gegen Waidenbrände von Arten in der südwest-Avestaustralischen Flora sollen zu besserem Umgang mit natürlichen und erneuerten Pflanzengemeinschaften der Region führen.

[1]  G. Ledyard Stebbins,et al.  Adaptive Radiation of Reproductive Characteristics in Angiosperms, I: Pollination Mechanisms , 1970 .

[2]  P. Holland HEATHLANDS AND RELATED SHRUBLANDS: DESCRIPTIVE STUDIES , 1981 .

[3]  B. J. Fox,et al.  Resilience of animal and plant communities to human disturbance , 1986 .

[4]  M. Westoby,et al.  Comparative evolutionary ecology of seed size. , 1992, Trends in ecology & evolution.

[5]  A. Gill Fire and The Australian Flora: A Review , 1975 .

[6]  D. Bell,et al.  Northern Sandplain Kwongan: regeneration following fire, juvenile period and flowering phenology , 1987 .

[7]  D. Churchill The distribution and prehistory of Eucalyptus diversicolor F. Muell., E. marginata Donn ex Sm., and E. calophylla R.Br. in relation to rainfall. , 1968 .

[8]  R. Specht,et al.  Dark Island heath (Ninety-mile Plain, South Australia). VI. Pyric succession: changes in composition, coverage, dry weight, and mineral nutrient status , 1958 .

[9]  R. Quinn Mammalian herbivory and resilience in mediterranean-climate ecosystems , 1986 .

[10]  J. Pate,et al.  Growth and Reproductive Performance of a Seeder and a Resprouter Species of Bossiaea as a Function of Plant Age After Fire , 1991 .

[11]  Ted L. Hanes Succession after Fire in the Chaparral of Southern California , 1971 .

[12]  B. Lamont,et al.  Seed Bank Dynamics of a Serotinous, Fire-sensitive Banksia Species , 1988 .

[13]  R. Hobbs,et al.  Fire-related Dynamics of a Banksia Woodland in South-western Western Australia , 1990 .

[14]  M. Westoby,et al.  Seedling Recruitment Strategies in Obligate-Seeding and Resprouting Banksia Shrubs. , 1987, Ecology.

[15]  J. Pate,et al.  The Significance of Root Starch in Post-fire Shoot Recovery of the Resprouter Stirlingia latifolia R. Br. (Proteaceae) , 1993 .

[16]  B. Bowen Fire response within the family Proteaceae: a comparison of plants desiplaying the seeder and resprouter mode of recovery , 1991 .

[17]  B. Lamont,et al.  Survival, growth and water relations of Banksia seedlings on a sand mine rehabilitation site and adjacent scrub-heath sites , 1992 .

[18]  K. Dixon,et al.  Seed bank patterns in Restionaceae and Epacridaceae after wildfire in kwongan in southwestern Australia , 1994 .

[19]  G. Keighery Pollination syndromes and breeding systems of Western Australian arid zone plants , 1982 .

[20]  J. S. Beard,et al.  Plant Life of Western Australia , 1993 .

[21]  E. Allen The Reconstruction Of Disturbed Arid Lands: An Ecological Approach , 1988 .

[22]  C. Mckell,et al.  Heathlands and Related Shrublands... Part A: Descriptive Studies. (Ecosystems of the World 9A) , 1981 .

[23]  J. Pate,et al.  The promotive effect of smoke derived from burnt native vegetation on seed germination of Western Australian plants , 1995, Oecologia.

[24]  D. Bell,et al.  Effects of temperature on the germination of selected Australian native species used in the rehabilitation of bauxite mining disturbance in Western Australia , 1992 .

[25]  S. Hopper BIOGEOGRAPHICAL ASPECTS OF SPECIATION IN THE SOUTHWEST AUSTRALIAN FLORA , 1979 .

[26]  J. Keeley,et al.  Reproduction of Chaparral Shrubs After Fire: A Comparison of Sprouting and Seeding Strategies , 1978 .

[27]  D. Bell THE PROCESS OF GERMINATION IN AUSTRALIAN SPECIES , 1999 .

[28]  H. Biswell 10 – Effects of Fire on Chaparral , 1974 .

[29]  Richard M. Cowling,et al.  The ecology of fynbos: nutrients, fire and diversity. , 1993 .

[30]  Jk Scott,et al.  The Impact of Destructive Insects on Reproduction in Six Species of Banksia L.f. (Proteaceae). , 1982 .

[31]  D. Bell,et al.  Soil seed‐bank components of the northern jarrah forest of Western Australia , 1986 .

[32]  E. Griffin,et al.  Fire in the Banksia woodlands of the Swan Coastal Plain , 1989 .

[33]  S. Keeley,et al.  A Comparison of the Pattern of Herb and Shrub Growth in Comparable Sites in Chile and California , 1977 .

[34]  R. Schroll Coping with Fire , 2002 .

[35]  Andrew Benwell Post-fire Seedling Recruitment in Coastal Heathland in Relation to Regeneration Strategy and Habitat , 1998 .

[36]  Christen Raunkiaer,et al.  The life forms of plants and statistical plant geography; being the collected papers of C. Raunkiaer. , 1935 .

[37]  A. Low,et al.  Aerial and Belowground Phytomass of Banksia Scrub-Heath at Eneabba, South-Western Australia , 1990 .

[38]  H. Mooney,et al.  CONVERGENT EVOLUTION OF MEDITERRANEAN‐CLIMATE EVERGREEN SCLEROPHYLL SHRUBS , 1970, Evolution; international journal of organic evolution.

[39]  J. Pate,et al.  Growth, reproductive performance and resource allocation of the herbaceous obligate seeder Gompholobium marginatum R. Br. (Fabaceae) , 1992, Oecologia.

[40]  B. Casper,et al.  Nonflying mammal pollination of southern african proteas: A non-coevolved system , 1983 .

[41]  P. Frost The Responses and Survival of Organisms in Fire-Prone Environments , 1984 .

[42]  D. Bell,et al.  Canopy‐borne seed store in three Western Australian plant communities , 1990 .

[43]  D. Turner,et al.  Light, nitrogenous compounds, smoke and GA3 break dormancy and enhance germination in the Australian everlasting daisy, Shoenia filifolia subsp. subulifolia , 2001 .

[44]  R. Bell,et al.  Factors limiting the recruitment of eucalyptus salmonophloia in remnant woodlands. III. Conditions necessary for seed germination , 1996 .

[45]  A. George The genus Banksia L.f. (Proteaceae) , 1981, Nuytsia—The journal of the Western Australian Herbarium.

[46]  A. Milewski A Comparison of Ecosystems in Mediterranean Australia and Southern Africa: Nutrient-Poor Sites at the Barrens and the Caledon Coast , 1983 .

[47]  D. C. Le Maitre,et al.  Canopy seed storage in woody plants , 1991, The Botanical Review.

[48]  J. Pate,et al.  Seed Ageing and Smoke: Partner Cuesin the Amelioration of Seed Dormancyin Selected Australian Native Species , 1997 .

[49]  H. Mooney Convergent evolution in Chile and California : Mediterranean climate ecosystems , 1979 .

[50]  S. Davis,et al.  Differential survival of chaparral seedlings during the first summer drought after wildfire , 1988, Oecologia.

[51]  W. Bond,et al.  Variation in seedling recruitment of Cape Proteaceae after fire , 1984 .

[52]  Martin A. Smith,et al.  Comparative seed germination ecology of Austrostipa compressa and Ehrharta calycina (Poaceae) in a Western Australian Banksia woodland , 1999 .

[53]  P. Regal POLLINATION BY WIND AND ANIMALS: Ecology of Geographic Patterns , 1982 .

[54]  D. Bell Interaction of Fire, Temperature and Light in the Germination Response of 16 Species from the Eucalyptus marginata Forest of South-western Western Australia , 1994 .

[55]  Sean M. Bellairs,et al.  Seed stores for restoration of species-rich shrubland vegetation following mining in Western Australia , 1993 .

[56]  M. Westoby,et al.  Seed mass and seedling dimensions in relation to seedling establishment , 2000, Oecologia.

[57]  R. Whelan,et al.  Flowering phenology, seed set and bird pollination of five Western Australian Banksia species , 1980 .

[58]  J. Pate,et al.  Contrasting Growth and Morphological Characteristics of Fire-Sensitive (Obligate Seeder) and Fire-Resistant (Resprouter) Species of Restionaceae (S Hemisphere Restiads) From South-Western Western-Australia , 1991 .

[59]  K. R. Sporne The morphology of angiosperms: The structure and evolution of flowering plants , 1974 .

[60]  B. Lamont,et al.  Seed Production and Mortality in a Rare Banksia Species , 1988 .

[61]  B. Lamont Sexual Versus Vegetative Reproduction in Banksia elegans , 1988, Botanical Gazette.

[62]  H. Recher,et al.  Pollination, Reproduction, and Fire , 1979, The American Naturalist.

[63]  R. Cowling,et al.  On the nature of Gondwanan species flocks: diversity of Proteaceae in Mediterranean south-western Australia and South Africa. , 1998 .

[64]  R. Wills Management of the flora utilised by the European honey bee in kwongan of the Northern Sandplain of Western Australia , 1989 .

[65]  A. Baird Regeneration after fire in King's Park, Perth, Western Australia. , 1977 .

[66]  J. Koch,et al.  Effect of fire on the topsoil seed banks of rehabilitated bauxite mine sites in the jarrah forest of Western Australia , 2000 .

[67]  S. James Lignotubers and burls— their structure, function and ecological significance in Mediterranean ecosystems , 1984, The Botanical Review.

[68]  R. Bell,et al.  Factors Limiting the Recruitment of Eucalyptus salmonophloia in Remnant Woodlands .II. Postdispersal Seed Predation and Soil Seed Reserves , 1995 .

[69]  D. Bell,et al.  Northern Sandplain Kwongan: effect of fire on Hakea obliqua and Beaufortia elegans population structure , 1987 .

[70]  J. Plummer,et al.  Effects of temperature, light and gibberellic acid on the germination of seeds of 43 species native to Western Australia , 1995 .

[71]  C. Raunkiær,et al.  The life forms of plants and statistical plant geography , 1934 .

[72]  B. Lamont,et al.  Seed Bank and Population Dynamics of Banksia cuneata: The Role of Time, Fire, and Moisture , 1991, Botanical Gazette.

[73]  J. Koch,et al.  Implications of seedling emergence to site restoration following bauxite mining in Western Australia. , 1996 .

[74]  P. Groom,et al.  SEED AND SEEDLING BIOLOGY OF THE WOODY-FRUITED PROTEACEAE , 1998 .

[75]  R. Bradstock,et al.  Fire and competition in Australian heath: a conceptual model and field investigations , 1994 .

[76]  D. Whitehead WIND POLLINATION IN THE ANGIOSPERMS: EVOLUTIONARY AND ENVIRONMENTAL CONSIDERATIONS , 1969, Evolution; international journal of organic evolution.

[77]  L. D. Pryor The biology of eucalypts , 1978 .

[78]  R. Cowling,et al.  Population ecology of Western Australian Banksia species: implications for the wildflower industry , 1986 .

[79]  J. Mccomb The sex forms of species in the flora of the south-west of Western Australia , 1966 .

[80]  R. S. Adamson,et al.  The Plant Communities of Table Mountain III. A Six Years' Study of Regeneration After Burning , 1935 .

[81]  R. Fulton,et al.  Pollination, reproduction, and fire in California Arctostaphylos , 2004, Oecologia.

[82]  A. Kelly,et al.  Relationships between seed germination requirements and ecophysiological characteristics aid the recovery of threatened native plant species in Western Australia , 2002 .

[83]  R. Macarthur,et al.  The Theory of Island Biogeography , 1969 .

[84]  Z. Naveh,et al.  12 – Effects of Fire in the Mediterranean Region , 1974 .

[85]  M. Westoby,et al.  Population structure and reproductive status of two Banksia shrubs at various times after fire , 1987, Vegetatio.

[86]  J. Olesen,et al.  Seed Production, Pollinator Attractants and Breeding System in Relation to Fire Response—Are There Reproductive Syndromes among Co-occurring Proteaceous Shrubs? , 1998 .

[87]  R. F. Parsons,et al.  Effects of Time Since Fire on Heath Floristics at Wilson's Promontory, Southern Australia , 1978 .

[88]  J. Koch,et al.  Post-fire succession in the northern jarrah forest of Western Australia. , 1980 .

[89]  B. V. Wilgen SOME EFFECTS OF POST-FIRE AGE ON THE ABOVE-GROUND PLANT BIOMASS OF FYNBOS (MACCHIA) VEGETATION IN SOUTH AFRICA , 1982 .

[90]  P. Myerscough,et al.  Fire effects on seed relaease and the emergence and establishment of seedlings in Banksia ericifolia. L.f , 1981 .

[91]  I. Abbott REPRODUCTIVE ECOLOGY OF BANKSIA GRANDIS (PROTEACEAE) , 1985 .

[92]  Jon E. Keeley,et al.  Seed Production, Seed Populations in Soil, and Seedling Production After Fire for Two Congeneric Pairs of Sprouting and Nonsprouting Chaparal Shrubs , 1977 .

[93]  J. Pate,et al.  Influence of seed size and quality on seedling development under low nutrient conditions in five Australian and South African members of the Proteaceae. , 1990 .

[94]  D. Bell,et al.  Tolerance of thermal shock in seeds , 1998 .

[95]  Michelle R. Leishman,et al.  On misinterpreting the phylogenetic correction , 1995 .

[96]  J. Pate,et al.  Growth and Fire Response of Selected Epacridaceae of South-Western Australia , 1996 .

[97]  I. Abbott Emergence, early survival, and growth of seedlings of six tree species in Mediterranean forest of Western Australia , 1984 .

[98]  B. Lamont,et al.  Seed banks, fire season, safe sites and seedling recruitment in five co-occurring Banksia species , 1989 .

[99]  J. Plummer,et al.  Ecophysiological effects of light quality and nitrate on seed germination in species from Western Australia , 1999 .

[100]  Mark A. Burgman,et al.  A stochastic model for the viability of Banksia cuneata populations : environmental, demographic and genetic effects , 1992 .

[101]  P. A. Morrow Host specificity of insects in a community of three co‐dominant Eucalyptus species , 1977 .

[102]  R. J. Vogl,et al.  Fire and Manzanita Chaparral in the San Jacinto Mountains, California , 1972 .

[103]  J. Pate,et al.  Pollen Selection by Honeybees in Shrublands of the Northern Sandplains of Western Australia , 1987 .

[104]  M. Bedward,et al.  Simulation of the effect of season of fire on post-fire seedling emergence of two Banksia species based on long-term rainfall records , 1992 .

[105]  R. Cowling,et al.  Post-Fire Recruitment of Four Co-Occurring Banksia Species , 1987 .

[106]  B. Lamont,et al.  Post-fire mortality and water relations of three congeneric shrub species under extreme water stress — a trade-off with fecundity? , 1996, Oecologia.

[107]  R. Cowling,et al.  Seed Bank Dynamics of Four Co-Occurring Banksia Species , 1987 .

[108]  J. Lewis,et al.  Reproductive isolation of co-occurring Banksia species at the Yule Brook Botany Reserve, Western Australia , 1981 .

[109]  A. Markey,et al.  Biogeography of Fire-Killed and Resprouting Banksia Species in South-Western Australia , 1995 .

[110]  A. Gill,et al.  Intervals between prescribed fires in Australia: what intrinsic variation should apply? , 1998 .

[111]  G. Cary,et al.  Robustness of demographic estimates in studies of plant responses to fire , 1994 .

[112]  A. Gill,et al.  Survival of serotinous seedbanks during bushfires: Comparative studies of Hakea species from southeastern Australia , 1994 .

[113]  A. Hopkins,et al.  Western Australian Species-Rich Kwongan (Sclerophyllous Shrubland) Affected by Drought , 1980 .

[114]  James H. Brown,et al.  Evolution of Species Assemblages: Effects of Energetic Constraints and Species Dynamics on the Diversification of the North American Avifauna , 1987, The American Naturalist.

[115]  C. I. Davern,et al.  Reproductive success, spontaneous embryo abortion, and genetic load in flowering plants , 1987, Oecologia.

[116]  C. H. Muller,et al.  Allelopathic Effects of Adenostoma fasciculatum, "Chamise", in the California Chaparral , 1969 .

[117]  A. Hopkins,et al.  An ecological analysis of kwongan vegetation south of Eneabba, Western Australia , 1981 .

[118]  A. Grisebach Die Vegetation der Erde nach ihrer klimatischen Anordnung: ein Abriss der vergleichenden Geographie der Pflanzen; , 1872, Nature.

[119]  Jon E. Keeley,et al.  Resilience of mediterranean shrub communities to fires , 1986 .

[120]  D. Bell,et al.  Temperature effects on the seed-germination of 10 kwongan species from eneabba, Western-Australia , 1990 .

[121]  B. Lamont Gradient and zonal analysis of understorey suppression by Eucalyptus wandoo , 1985, Vegetatio.

[122]  M. Siddiqi,et al.  Studies in the ecology of coastal heath in New South Wales , 1976 .

[123]  K. R. Sporne The morphology of gymnosperms : the structure and evolution of primitive seed-plants , 1965 .

[124]  J. Pate,et al.  Seedling Growth and Storage Characteristics of Seeder and Resprouter Species of Mediterranean-type Ecosystems of S. W. Australia , 1990 .

[125]  P. Christensen,et al.  Effect of prescribed burning on the flora and fauna of south west Australian forests , 1975 .

[126]  S. Davis,et al.  Recovery patterns of three chaparral shrub species after wildfire , 1989, Oecologia.

[127]  F. Kruger,et al.  Plant Community Diversity and Dynamics in Relation to Fire , 1983 .

[128]  R. Groves,et al.  Distribution of biomass, nitrogen, phosphorus and other nutrients in Banksia marginata and B. ornata shoots of different ages after fire , 1986 .

[129]  D. Bell,et al.  Seed ecology in relation to reclamation: lessons from mined lands in Western Australia , 1990 .

[130]  N. Casson,et al.  Biology of Fire Ephemerals of the Sandplains of the Kwongan of South-Western Australia , 1985 .

[131]  B. Lamont The comparative reproductive biology of three Leucospermum species (Proteaceae) in relation to fire responses and breeding system , 1985 .

[132]  P. Groom,et al.  Leaf morphology and life form influence water relations of Hakea species on different soil substrates within southwestern Australia. , 1995 .

[133]  J. Plummer,et al.  Seed germination ecology in southwestern Western Australia , 2008, The Botanical Review.

[134]  J. Pate,et al.  Reproductive Potential of Obligate Seeder and Resprouter Herbaceous Perennial Monocots (Restionaceae, Anarthriaceae, Ecdeiocoleaceae) from South-western Western Australia , 1997 .