The MIT vision machine

Computer vision has developed algorithms for several early vision processes, such as edge detection, stereopsis, motion, texture, and color, which give separate cues as to the distance from the viewer of three-dimensional surfaces, their shape, and their material properties. Biological vision systems, however, greatly outperform computer vision programs. I t is clear that one of the keys to the reliability, flexibility, and robustness of biological vision system in unconstrained environments is their ability to integrate many diEerent visual cues. For this reason, we continue the development of a Vision Machine system to explore the issue of intagration of early vision modules. The s m a h serves the purpose of developing parallel vision algorithms, because its main computational engine is a parallel superwmputer, the Connection Machine.

[1]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[2]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[3]  H. Barrow,et al.  RECOVERING INTRINSIC SCENE CHARACTERISTICS FROM IMAGES , 1978 .

[4]  James Christopher Wyllie,et al.  The Complexity of Parallel Computations , 1979 .

[5]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[6]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[7]  T. Poggio,et al.  Visual hyperacuity: spatiotemporal interpolation in human vision , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  Michael Brady MIT Progress in Understanding Images , 1982 .

[9]  W E Grimson,et al.  A computational theory of visual surface interpolation. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[10]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[11]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  W. Eric L. Grimson,et al.  Binocular shading and visual surface reconstruction , 1984, Comput. Vis. Graph. Image Process..

[13]  S. Ullman Visual routines , 1984, Cognition.

[14]  Ellen C. Hildreth,et al.  Measurement of Visual Motion , 1984 .

[15]  Jonathan G Bliss Velocity-tuned spatio-temporal interpolation and approximation in vision , 1985 .

[16]  Tomaso Poggio Integrating vision modules with coupled MRFs , 1985 .

[17]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[18]  Donald D. Hoffman,et al.  Codon constraints on closed 2D shapes , 1985, Comput. Vis. Graph. Image Process..

[19]  W. Daniel Hillis,et al.  The connection machine , 1985 .

[20]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[21]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Tomaso A. Poggio,et al.  On parallel stereo , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[23]  H. Bülthoff,et al.  INTERACTION OF DIFFERENT MODULES IN DEPTH PERCEPTION. , 1987, ICCV 1987.

[24]  Heinrich H. Bülthoff,et al.  Interaction of Different Modules in Depth Perception: Stereo and Shading , 1987 .

[25]  Guy E. Blelloch,et al.  Scans as Primitive Parallel Operations , 1989, ICPP.

[26]  James V. Mahoney,et al.  Image Chunking: Defining Spatial Building Blocks for Scene Analysis , 1987 .

[27]  M. Bertero,et al.  Ill-posed problems in early vision , 1988, Proc. IEEE.

[28]  H H Bülthoff,et al.  Integration of depth modules: stereo and shading. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[29]  T. Poggio,et al.  A parallel algorithm for real-time computation of optical flow , 1989, Nature.

[30]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[31]  Tomaso A. Poggio,et al.  Motion Field and Optical Flow: Qualitative Properties , 1989, IEEE Trans. Pattern Anal. Mach. Intell..