Data assimilation of stratospheric constituents: a review

The data assimilation of stratospheric constituents is reviewed. Several data assimilation methods are introduced, with particular consideration to their application to stratospheric constituent measurements. Differences from meteorological data assimilation are outlined. Historically, two approaches have been used to carry out constituent assimilation. One approach has carried constituent assimilation out as part of a Numerical Weather Prediction system; the other has carried it out in a standalone chemical model, often with a more sophisticated representation of chemical processes. Whereas the aim of the Numerical Weather Prediction approach has been to improve weather forecasts, the aims of the chemical model approach have included providing chemical forecasts and analyses of chemical constituents. A range of constituent assimilation systems developed in these two areas is presented and strengths and weaknesses discussed. The use of stratospheric constituent data assimilation to evaluate models, observations and analyses, and to provide analyses of constituents, monitor ozone, and make ozone forecasts is discussed. Finally, the current state of affairs is assessed, future directions are discussed, and potential key drivers identified.

[1]  Roger Daley,et al.  Estimating the Wind Field from Chemical Constituent Observations: Experiments with a One-Dimensional Extended Kalman Filter , 1995 .

[2]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[3]  N. Bormann,et al.  Assimilation of MIPAS limb radiances in the ECMWF system. II: Experiments with a 2‐dimensional observation operator and comparison to retrieval assimilation , 2007 .

[4]  J. Morcrette,et al.  A linearized approach to the radiative budget of the stratosphere: influence of the ozone distribution , 2006 .

[5]  Lars Peter Riishojgaard,et al.  A direct way of specifying flow‐dependent background error correlations for meteorological analysis systems , 1998 .

[6]  P. Bhartia,et al.  Assimilation of SBUV Version 8 Radiances into the GEOS Ozone DAS , 2004 .

[7]  Istvan Szunyogh,et al.  A Local Ensemble Kalman Filter for Atmospheric Data Assimilation , 2002 .

[8]  Yuk L. Yung,et al.  The Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment: Deployment on the ATLAS Space Shuttle Missions , 1996 .

[9]  L. W. Sterritt,et al.  The cryogenic limb array etalon spectrometer (CLAES) on UARS: Experiment description and performance , 1993 .

[10]  D. Fonteyn,et al.  Four‐dimensional variational chemical assimilation of CRISTA stratospheric measurements , 2001 .

[11]  Shian-Jiann Lin,et al.  Parallel Implementation of a Kalman Filter for Constituent Data Assimilation , 1997 .

[12]  Jennifer A. Logan,et al.  An analysis of ozonesonde data for the troposphere : recommendations for testing 3-D models and development of a gridded climatology for tropospheric ozone , 1999 .

[13]  D. Cariolle,et al.  Vers une meilleure représentation de la distribution et de la variabilité de l'ozone atmosphérique par l'assimilation des données satellitaires , 2005 .

[14]  Richard B. Rood,et al.  Assimilation of ozone data from the Michelson Interferometer for Passive Atmospheric Sounding , 2005 .

[15]  Herbert M. Pickett,et al.  Microwave Limb Sounder THz module on Aura , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[16]  David John Lary,et al.  Chemical data assimilation: A case study of solar occultation data from the ATLAS 1 mission of the Atmospheric Trace Molecule Spectroscopy Experiment (ATMOS) , 2003 .

[17]  O. Talagrand,et al.  Variational Assimilation. Adjoint Equations , 2003 .

[18]  P. Duchatelet,et al.  Comparisons between ground-based FTIR and MIPAS N 2 O and HNO 3 profiles before and after assimilation in BASCOE , 2006 .

[19]  A. Lorenc,et al.  The Met Office global four‐dimensional variational data assimilation scheme , 2007 .

[20]  Henk Eskes,et al.  Global ozone forecasting based on ERS-2 GOME observations , 2002 .

[21]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[22]  O. Talagrand,et al.  Bayesian Estimation. Optimal Interpolation. Statistical Linear Estimation , 2003 .

[23]  R. Lindzen,et al.  Radiative and Photochemical Processes in Mesospheric Dynamics: Part I, Models for Radiative and Photochemical Processes , 1965 .

[24]  James M. Russell,et al.  The Halogen Occultation Experiment , 1993 .

[25]  Daniel Cariolle,et al.  Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model , 1986 .

[26]  D. P. DEE,et al.  Bias and data assimilation , 2005 .

[27]  R. Garcia,et al.  The role of molecular hydrogen and methane oxidation in the water vapour budget of the stratosphere , 1988 .

[28]  D. Pham Stochastic Methods for Sequential Data Assimilation in Strongly Nonlinear Systems , 2001 .

[29]  Multivariate Chemical Data Assimilation , 2003 .

[30]  Richard Swinbank,et al.  Assimilation of ozone profiles and total column measurements into a global general circulation model , 2002 .

[31]  Peter Barthol,et al.  CRyogenic Infrared Spectrometers and Telescopes for the Atmosphere - CRISTA , 1999, Optical Remote Sensing of the Atmosphere.

[32]  Malcolm K. W. Ko,et al.  Interrelationships between mixing ratios of long‐lived stratospheric constituents , 1992 .

[33]  B. Khattatov,et al.  Test of the night‐time polar stratospheric NO2 decay using wintertime SAOZ measurements and chemical data assimilation , 2003 .

[34]  Mark R. Schoeberl,et al.  A comparison of the lower stratospheric age spectra derived from a general circulation model and two data assimilation systems , 2002 .

[35]  D. Murtagh,et al.  An overview of the Odin atmospheric mission , 2002 .

[36]  M. Juckes,et al.  The ASSET intercomparison of ozone analyses: method and first results , 2006 .

[37]  Manuel López-Puertas,et al.  MIPAS level 2 operational analysis , 2006 .

[38]  M. Guirlet,et al.  Assimilation of Odin/SMR O3 and N2O measurements in a three‐dimensional chemistry transport model , 2004 .

[39]  Joe W. Waters,et al.  Atmospheric measurements by the MLS experiments: Results from UARS and plans for the future , 1998 .

[40]  Hendrik Elbern,et al.  Emission rate and chemical state estimation by 4-dimensional variational inversion , 2007 .

[41]  David John Lary Data assimilation: a powerful tool for atmospheric chemistry , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[42]  Glen Jaross,et al.  Earth probe total ozone mapping spectrometer (TOMS): data products user's guide , 1998 .

[43]  Dick Dee,et al.  On the choice of variable for atmospheric moisture analysis , 2022 .

[44]  M. Chipperfield,et al.  Effect of interannual meteorological variability on mid‐latitude O3 , 1997 .

[45]  David J. Lary,et al.  Lagrangian four‐dimensional variational data assimilation of chemical species , 1995 .

[46]  B. Lawrence,et al.  NOGAPS-ALPHA model simulations of stratospheric ozone during the SOLVE2 campaign , 2004 .

[47]  Volker Grewe,et al.  Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past , 2006 .

[48]  Martyn P. Chipperfield,et al.  Mean age of air and transport in a CTM: Comparison of different ECMWF analyses , 2007 .

[49]  John Derber,et al.  Changes to the 1995 NCEP Operational Medium-Range Forecast Model Analysis-Forecast System , 1997 .

[50]  John Derber,et al.  The Use of TOVS Cloud-Cleared Radiances in the NCEP SSI Analysis System , 1998 .

[51]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[52]  Henk Eskes,et al.  Assimilation of GOME total‐ozone satellite observations in a three‐dimensional tracer‐transport model , 2003 .

[53]  A. Segers,et al.  Assimilation of GOME ozone profiles and a global chemistry–transport model using a Kalman filter with anisotropic covariance , 2005 .

[54]  W. Collins,et al.  Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX , 2001 .

[55]  David W. Tarasick,et al.  Data assimilation with the Canadian middle atmosphere model , 2001 .

[56]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[57]  S. Uppala,et al.  ECMWF Analyses and Forecasts of Stratospheric Winter Polar Vortex Breakup: September 2002 in the Southern Hemisphere and Related Events , 2005 .

[58]  A. Dethof,et al.  Assimilation of ozone retrievals from the MIPAS instrument on board ENVISAT , 2003 .

[59]  Elías Hólm,et al.  Ozone assimilation in the ERA‐40 reanalysis project , 2004 .

[60]  L. Riishojgaard,et al.  The GEOS ozone data assimilation system , 2000 .

[61]  Gert König-Langlo,et al.  The Polar Ozone and Aerosol Measurement (POAM) III instrument and early validation results , 1999 .

[62]  David E. Siskind,et al.  CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models , 2006 .

[63]  Arjo Segers,et al.  Data assimilation of ozone in the atmospheric transport chemistry model LOTOS , 2000, Environ. Model. Softw..

[64]  A. Tangborn,et al.  A Wavelet-Based Reduced Rank Kalman Filter for Assimilation of Stratospheric Chemical Tracer Observations , 2004 .

[65]  Matthew T. DeLand,et al.  A cohesive total ozone data set from the SBUV(/2) satellite system , 2002 .

[66]  S. Cohn,et al.  An Introduction to Estimation Theory , 1997 .

[67]  James B. Kerr,et al.  The Canadian operational procedure for forecasting total ozone and UV radiation , 2007 .

[68]  S. Cohn Dynamics of Short-Term Univariate Forecast Error Covariances , 1993 .

[69]  Michael Buchwitz,et al.  The Global Ozone Monitoring Experiment (Gome) : Mission, instrument concept, and first scientific results , 1997 .

[70]  G. Nikulin,et al.  A low‐ozone episode during the European heatwave of August 2003 , 2006 .

[71]  S. Bekki,et al.  Validation of the self‐consistency of GOMOS NO3, NO2 and O3 data using chemical data assimilation , 2004 .

[72]  David John Lary,et al.  Sequential assimilation of stratospheric chemical observations in a three-dimensional model , 2002 .

[73]  Dennis K. McLaughlin,et al.  Opportunities for enhanced collaboration within the data assimilation community , 2005 .

[74]  S. Pawson,et al.  Assimilation of Stratospheric Meteorological and Constituent Observations: A Review , 2004 .

[75]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[76]  S. Pawson,et al.  Assimilation of ozone profiles from the Improved Limb Atmospheric Spectrometer-II: Study of Antarctic ozone , 2006 .

[77]  D. Fussen,et al.  4D-var assimilation of stratospheric aerosol satellite data , 2000 .

[78]  John C. Gille,et al.  Assimilation of satellite observations of long-lived chemical species in global chemistry transport models , 2000 .

[79]  Andrea Molod,et al.  The climatology of parameterized physical processes in the GEOS-1 GCM and their impact on the GEOS-1 data assimilation system , 1996 .

[80]  Philippe Courtier,et al.  Dual formulation of four‐dimensional variational assimilation , 1997 .

[81]  N. Bormann,et al.  A fast radiative‐transfer model for the assimilation of infrared limb radiances from MIPAS , 2005 .

[82]  Hui-Chun Liu,et al.  Ice polar stratospheric clouds detected from assimilation of Atmospheric Infrared Sounder data , 2007 .

[83]  L. Larrabee Strow,et al.  Radiative transfer in the 9.6 μm HIRS ozone channel using collocated SBUV‐determined ozone abundances , 1998 .

[84]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[85]  J. Morcrette Ozone-radiation interactions in the ECMWF forecast system , 2003 .

[86]  Paul Poli,et al.  Diagnosis of observation, background and analysis‐error statistics in observation space , 2005 .

[87]  Philippe Courtier,et al.  Unified Notation for Data Assimilation : Operational, Sequential and Variational , 1997 .

[88]  M. Matricardi,et al.  An improved fast radiative transfer model for assimilation of satellite radiance observations , 1999 .

[89]  Effects of model chemistry and data biases on stratospheric ozone assimilation , 2007 .

[90]  S. Tilmes,et al.  Chemical ozone loss in the Arctic winter 1991-1992 , 2007 .

[91]  John C. Gille,et al.  Assimilation of photochemically active species and a case analysis of UARS data , 1999 .

[92]  M. Chipperfield,et al.  Chemical ozone loss in the Arctic winter 2002/2003 determined with Match , 2005 .

[93]  Henk Eskes,et al.  Ozone forecasts of the stratospheric polar vortex-splitting event in September 2002 , 2005 .

[94]  John Austin,et al.  Toward the four dimensional assimilation of stratospheric chemical constituents , 1992 .

[95]  Victor Shutyaev,et al.  Data assimilation for the earth system , 2003 .

[96]  Y. Sasano,et al.  Characteristics and performance of the Improved Limb Atmospheric Spectrometer‐II (ILAS‐II) on board the ADEOS‐II satellite , 2006 .

[97]  Stéphane Louvel,et al.  Implementation of a dual variational algorithm for assimilation of synthetic altimeter data in the oceanic primitive equation model MICOM , 2001 .

[98]  H. Kelder,et al.  An ozone climatology based on ozonesonde and satellite measurements , 1998 .

[99]  A. O'Neill,et al.  Evaluation of ozone and water vapor fields from the ECMWF reanalysis ERA-40 during 1991–1999 in comparison with UARS satellite and MOZAIC aircraft observations , 2006 .

[100]  Intercomparison of direct and indirect measurements : MIPAS versus sonde ozone profiles , 2004 .

[101]  O. Talagrand,et al.  Diagnosis and tuning of observational error in a quasi‐operational data assimilation setting , 2006 .

[102]  M. Fisher,et al.  347 Developments in 4 D-Var and Kalman Filtering , 1994 .

[103]  D. Blake,et al.  Effect of Photochemical Models on Calculated Equilibria and Cooling Rates in the Stratosphere , 1973 .

[104]  R. Stolarski,et al.  Parameterization of the photochemistry of stratospheric ozone including catalytic loss processes , 1985 .

[105]  Peter M. Lyster,et al.  Assimilation of Stratospheric Chemical Tracer Observations Using a Kalman Filter. Part I: Formulation , 2000 .

[106]  G. El Serafy,et al.  Near‐real‐time approach to assimilation of satellite‐retrieved 3D ozone fields in a global model using a simplified Kalman filter , 2003 .

[107]  Theodore G. Shepherd,et al.  Some challenges of middle atmosphere data assimilation , 2005 .

[108]  Richard Ménard,et al.  Assimilation of Stratospheric Chemical Tracer Observations Using a Kalman Filter. Part II: χ2-Validated Results and Analysis of Variance and Correlation Dynamics , 2000 .

[109]  S. J. Cox,et al.  The diagnosis and forecast of clear sky ultraviolet levels at the Earth's surface , 2007 .

[110]  Arlindo da Silva,et al.  Data assimilation in the presence of forecast bias , 1998 .

[111]  O. Talagrand,et al.  A Posteriori Validation of Assimilation Algorithms , 2003 .

[112]  Daniel Cariolle,et al.  A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations , 2007 .

[113]  J. Thepaut,et al.  383 Assimilation and Modelling of the Hydrological Cycle : ECMWF ’ s Status and Plans , 2002 .

[114]  J. Thepaut,et al.  The assimilation of AIRS radiance data at ECMWF , 2006 .

[115]  Peter H. Siegel,et al.  The Earth observing system microwave limb sounder (EOS MLS) on the aura Satellite , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[116]  Stephen E. Cohn,et al.  An Introduction to Estimation Theory (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice) , 1997 .

[117]  Dudley E. Shallcross,et al.  A review on the use of the adjoint method in four‐dimensional atmospheric‐chemistry data assimilation , 2001 .

[118]  W. Collins,et al.  The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation , 2001 .

[119]  A. Staniforth,et al.  A new dynamical core for the Met Office's global and regional modelling of the atmosphere , 2005 .

[120]  G. E. Serafy,et al.  Assimilation of 3D Ozone field in Global Chemistry Transport Models , 2002 .

[121]  B. Hannegan,et al.  Stratospheric ozone in 3-D models : A simple chemistry and the cross-tropopause flux , 2000 .

[122]  Lang-Ping Chang,et al.  Stratospheric Assimilation of Chemical Tracer Observations Using a Kalman Filter. Pt. 2; Chi-Square Validated Results and Analysis of Variance and Correlation Dynamics , 1998 .

[123]  S. Pawson,et al.  Monitoring of Observation Errors in the Assimilation of Satellite Ozone Data , 2004 .

[124]  John C. Gille,et al.  On applications of photochemical models to the design of measurement strategies , 2001 .

[125]  Richard Swinbank,et al.  Assimilation of stratospheric ozone from MIPAS into a global general‐circulation model: The September 2002 vortex split , 2006 .

[126]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[127]  D. Murtagh,et al.  A study of polar ozone depletion based on sequential assimilation of satellite data from the ENVISAT/MIPAS and Odin/SMR instruments , 2006 .

[128]  Clive D. Rodgers,et al.  Intercomparison of direct and indirect measurements: Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) versus sonde ozone profiles , 2004 .

[129]  J. Farman Ozone depletion , 1988, Nature.

[130]  David R. Jackson,et al.  Assimilation of EOS MLS ozone observations in the Met Office data‐assimilation system , 2007 .

[131]  John C. Gille,et al.  The Limb Infrared Monitor of the Stratosphere: Experiment Description, Performance, and Results , 1984 .

[132]  Heikki Saari,et al.  The ozone monitoring instrument , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[133]  S. Pawson,et al.  Evaluation of Transport in the Lower Tropical Stratosphere in a Global Chemistry and Transport Model , 2002 .

[134]  M Carlotti,et al.  Geo-fit Approach to the Analysis of Limb-Scanning Satellite Measurements. , 2001, Applied optics.

[135]  W. Lahoz,et al.  Evaluation of linear ozone photochemistry parametrizations in a stratosphere-troposphere data assimilation system , 2006 .

[136]  G. Brasseur,et al.  NOy partitioning and aerosol influences in the stratosphere , 2002 .

[137]  Henk Eskes,et al.  The Assimilation of Envisat data (ASSET) project , 2006 .

[138]  A. Dessler The Chemistry and Physics of Stratospheric Ozone , 2000 .

[139]  John Derber,et al.  The National Meteorological Center's spectral-statistical interpolation analysis system , 1992 .

[140]  K. Wargan,et al.  Antarctic stratospheric ozone from the assimilation of occultation data , 2004 .

[141]  N. Bormann,et al.  A fast radiative‐transfer model for the assimilation of MIPAS limb radiances: Accounting for horizontal gradients , 2006 .

[142]  Steven Pawson,et al.  A case study of excessive subtropical transport in the stratosphere of a data assimilation system , 2004 .

[143]  S. Cohn,et al.  Assessing the Effects of Data Selection with the DAO Physical-Space Statistical Analysis System* , 1998 .

[144]  John C. Gille,et al.  Assimilation of MLS ozone measurements in the global three‐dimensional chemistry transport model ROSE , 1998 .

[145]  David J. Lary,et al.  An observing system simulation experiment to evaluate the scientific merit of wind and ozone measurements from the future SWIFT instrument , 2005 .

[146]  D. Murtagh,et al.  Ozone depletion in the 2006/2007 Arctic winter , 2007 .

[147]  L. Riishojgaard On four‐dimensional variational assimilation of ozone data in weather‐prediction models , 1996 .

[148]  P. Courtier,et al.  Correlation modelling on the sphere using a generalized diffusion equation , 2001 .

[149]  J. Thepaut,et al.  Dynamical impact of total‐ozone observations in a four‐dimensional variational assimilation , 2000 .

[150]  G. Brasseur,et al.  Assimilation of MIPAS observations using a three‐dimensional global chemistry‐transport model , 2005 .

[151]  B. Boville,et al.  The effects of interactive ozone chemistry on simulations of the middle atmosphere , 2005 .

[152]  J. Thepaut,et al.  495 Assimilation of MIPAS limb radiances in the ECMWF system . Part I : Experiments with a 1-dimensional observation operator , 2006 .

[153]  D. Zupanski A General Weak Constraint Applicable to Operational 4DVAR Data Assimilation Systems , 1997 .

[154]  S. Bekki,et al.  Data assimilation of stratospheric ozone using a high‐resolution transport model , 2002 .

[155]  James M. Russell,et al.  SPARC assessment of upper tropospheric and stratospheric water vapour , 2000 .

[156]  Christopher D. Barnet,et al.  Accuracy of geophysical parameters derived from Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit as a function of fractional cloud cover , 2006 .

[157]  M. Juckes Evaluation of MIPAS ozone fields assimilated using a new algorithm constrained by isentropic tracer advection , 2006 .