Weakly Supervised Lesion Localization With Probabilistic-CAM Pooling

Localizing thoracic diseases on chest X-ray plays a critical role in clinical practices such as diagnosis and treatment planning. However, current deep learning based approaches often require strong supervision, e.g. annotated bounding boxes, for training such systems, which is infeasible to harvest in large-scale. We present Probabilistic Class Activation Map (PCAM) pooling, a novel global pooling operation for lesion localization with only image-level supervision. PCAM pooling explicitly leverages the excellent localization ability of CAM during training in a probabilistic fashion. Experiments on the ChestX-ray14 dataset show a ResNet-34 model trained with PCAM pooling outperforms state-of-the-art baselines on both the classification task and the localization task. Visual examination on the probability maps generated by PCAM pooling shows clear and sharp boundaries around lesion regions compared to the localization heatmaps generated by CAM. PCAM pooling is open sourced at this https URL.

[1]  Dwarikanath Mahapatra,et al.  Deep multiscale convolutional feature learning for weakly supervised localization of chest pathologies in X-ray images , 2018, MLMI@MICCAI.

[2]  Florian Metze,et al.  A Comparison of Five Multiple Instance Learning Pooling Functions for Sound Event Detection with Weak Labeling , 2018, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[3]  Max Welling,et al.  Attention-based Deep Multiple Instance Learning , 2018, ICML.

[4]  Li Yao,et al.  Weakly Supervised Medical Diagnosis and Localization from Multiple Resolutions , 2018, ArXiv.

[5]  Ronald M. Summers,et al.  ChestX-ray: Hospital-Scale Chest X-ray Database and Benchmarks on Weakly Supervised Classification and Localization of Common Thorax Diseases , 2019, Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics.

[6]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Bolei Zhou,et al.  Learning Deep Features for Discriminative Localization , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Yuxing Tang,et al.  Attention-Guided Curriculum Learning for Weakly Supervised Classification and Localization of Thoracic Diseases on Chest Radiographs , 2018, MLMI@MICCAI.

[9]  Hongyu Wang,et al.  ChestNet: A Deep Neural Network for Classification of Thoracic Diseases on Chest Radiography , 2018, ArXiv.

[10]  Ronan Collobert,et al.  From image-level to pixel-level labeling with Convolutional Networks , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).