Smoothing and cleaning up slivers

A sliver is a tetrahedron whose four vertices lie close to a plane and whose perpendicular projection to that plane is a convex quadrilateral with no short edge. Slivers axe both undesirable and ubiquitous in 3-dimensional Delaunay triangulations. Even when the point-set is well-spaced, slivers may result. This paper shows that such a point set permits a small perturbation whose Delaunay triangulation contains no slivers. It also gives deterministic algorithms that compute the perturbation of n points in time O(n logn) with one processor and in time O(log n) with O(n) processors.

[1]  Gary L. Miller,et al.  A Delaunay based numerical method for three dimensions: generation, formulation, and partition , 1995, STOC '95.

[2]  William H. Frey,et al.  An apporach to automatic three‐dimensional finite element mesh generation , 1985 .

[3]  D. A. Field Laplacian smoothing and Delaunay triangulations , 1988 .

[4]  Alan M. Frieze,et al.  Separator based parallel divide and conquer in computational geometry , 1992, SPAA '92.

[5]  P. Plassmann,et al.  An Eecient Parallel Algorithm for Mesh Smoothing , 1995 .

[6]  L. Paul Chew,et al.  Guaranteed-quality Delaunay meshing in 3D (short version) , 1997, SCG '97.

[7]  Carl Ollivier-Gooch,et al.  Tetrahedral mesh improvement using swapping and smoothing , 1997 .

[8]  Jonathan Richard Shewchuk,et al.  Tetrahedral mesh generation by Delaunay refinement , 1998, SCG '98.

[9]  S. Teng,et al.  Biting: advancing front meets sphere packing , 2000 .

[10]  Herbert Edelsbrunner,et al.  Sliver exudation , 2000, J. ACM.

[11]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[12]  Mark T. Jones,et al.  An efficient parallel algorithm for mesh smoothing , 1995 .

[13]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[14]  Herbert Edelsbrunner,et al.  Sliver exudation , 1999, SCG '99.

[15]  Dafna Talmor,et al.  Well-Spaced Points for Numerical Methods , 1997 .

[16]  G. Fix Review: Philippe G. Ciarlet, The finite element method for elliptic problems , 1979 .