Two Cross Validation Criteria for SIRα and PSIRα methods in view of prediction

SummaryIn this paper, we will consider the semiparametric regression model introduced by Duan and Li (1991). The response variable y will be linked to an index x′β (i.e. a linear combination of the explanatory variables x) through an unknown function. In order to estimate the direction of the unknown slope parameter β, Slicing and Pooled Slicing methods have been developed (see Duan and Li (1991), Li (1991), Aragon and Saracco (1997), Saracco (2001)). All the methods are computationally simple and fast. Among these methods, we focus on SIRα and PSIRα. We propose two cross validation criteria to select the parameter α. The evaluation of these criteria requires the kernel smoothing estimation of the link function. The choice of α is illustrated with simulations.

[1]  Jérôme Saracco,et al.  Sliced Inverse Regression (SIR): An Appraisal of Small Sample Alternatives to Slicing , 1996 .

[2]  J. Horowitz Semiparametric Methods in Econometrics , 2011 .

[3]  M. C. Jones,et al.  Spline Smoothing and Nonparametric Regression. , 1989 .

[4]  W. Härdle Applied Nonparametric Regression , 1992 .

[5]  R. Cook,et al.  Estimating the structural dimension of regressions via parametric inverse regression , 2001 .

[6]  S. Weisberg,et al.  Comments on "Sliced inverse regression for dimension reduction" by K. C. Li , 1991 .

[7]  Jérôme Saracco,et al.  An asymptotic theory for sliced inverse regression , 1997 .

[8]  K. Fang,et al.  Asymptotics for kernel estimate of sliced inverse regression , 1996 .

[9]  Jérôme Saracco,et al.  POOLED SLICING METHODS VERSUS SLICING METHODS , 2001 .

[10]  D. Freedman,et al.  Asymptotics of Graphical Projection Pursuit , 1984 .

[11]  Lixing Zhu,et al.  Asymptotics of sliced inverse regression , 1995 .

[12]  Ker-Chau Li,et al.  Slicing Regression: A Link-Free Regression Method , 1991 .

[13]  Ker-Chau Li,et al.  On Principal Hessian Directions for Data Visualization and Dimension Reduction: Another Application of Stein's Lemma , 1992 .

[14]  W. Härdle Applied Nonparametric Regression , 1991 .

[15]  Raymond J. Carroll,et al.  Measurement Error Regression with Unknown Link: Dimension Reduction and Data Visualization , 1992 .

[16]  Michael G. Schimek,et al.  Smoothing and Regression: Approaches, Computation, and Application , 2000 .

[17]  L. Ferré Determining the Dimension in Sliced Inverse Regression and Related Methods , 1998 .

[18]  Raymond J. Carroll,et al.  An Asymptotic Theory for Sliced Inverse Regression , 1992 .

[19]  Ker-Chau Li Sliced inverse regression for dimension reduction (with discussion) , 1991 .

[20]  E. Bura Dimension reduction via parametric inverse regression , 1997 .

[21]  James R. Schott,et al.  Determining the Dimensionality in Sliced Inverse Regression , 1994 .

[22]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[23]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[24]  Un critère de choix de la dimension dans la méthode SIR II , 1999 .