Parametric study for electrode microstructure influence on SOFC performance

[1]  Zhiyi Li,et al.  Performance enhancement of a beam and slot interconnector for anode-supported SOFC stack , 2021 .

[2]  Stephen J. McPhail,et al.  Continuum scale modelling and complementary experimentation of solid oxide cells , 2021, Progress in Energy and Combustion Science.

[3]  Gregory A. Hackett,et al.  Quantifying morphological variability and operating evolution in SOFC anode microstructures , 2021 .

[4]  N. Shikazono,et al.  Distribution of Reaction Sites in SOFC Cathode through Oxygen Isotope Labeling with Three-Dimensional Microstructural Analysis , 2021 .

[5]  M. Andersson,et al.  Numerical simulation of solid oxide fuel cells comparing different electrochemical kinetics , 2021, International Journal of Energy Research.

[6]  M. Ni,et al.  Morphology and performance evolution of anode microstructure in solid oxide fuel cell: A model-based quantitative analysis , 2021 .

[7]  Habip Gökay Korkmaz,et al.  Engineering solid oxide fuel cell electrode microstructure by a micro-modeling tool based on estimation of TPB length , 2021 .

[8]  R. Pearson,et al.  Review of approaches to fusion energy , 2020 .

[9]  Z. Jiao,et al.  Quantitative study on solid oxide fuel cell anode microstructure stability based on 3D microstructure reconstructions , 2020 .

[10]  Keqing Zheng,et al.  The tortuosity factor effect on solid oxide fuel cell performance , 2020 .

[11]  Yuya Tachikawa,et al.  Simulation of SOFC performance using a modified exchange current density for pre-reformed methane-based fuels , 2020 .

[12]  Naoki Shikazono,et al.  Modeling of solid oxide fuel cell (SOFC) electrodes from fabrication to operation: Correlations between microstructures and electrochemical performances , 2019, Energy Conversion and Management.

[13]  W. Koo,et al.  Numerical and experimental study on a hemispheric point-absorber-type wave energy converter with a hydraulic power take-off system , 2019, Renewable Energy.

[14]  M. Cassidy,et al.  Tailoring SOFC Electrode Microstructures for Improved Performance , 2018, Advanced Energy Materials.

[15]  Bin Chen,et al.  Modeling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design , 2018, Applied Energy.

[16]  Jon G. Pharoah,et al.  Stability Issues for Fuel Cell Models in the Activation and Concentration Regimes , 2018 .

[17]  M. Andersson,et al.  Thermal stress analysis of sulfur deactivated solid oxide fuel cells , 2018 .

[18]  Bernhard Tjaden,et al.  Tortuosity in electrochemical devices: a review of calculation approaches , 2018 .

[19]  Yanhai Du,et al.  Review on fabrication techniques for porous electrodes of solid oxide fuel cells by sacrificial template methods , 2017 .

[20]  J. Parisi,et al.  Microstructure degradation of Ni/CGO anodes for solid oxide fuel cells after long operation time using 3D reconstructions by FIB tomography. , 2017, Physical chemistry chemical physics : PCCP.

[21]  B. Sundén,et al.  Modeling of a Gradient Porosity SOFC Anode using the Lattice Boltzmann Method , 2017 .

[22]  D. Brett,et al.  3D characterization of diffusivities and its impact on mass flux and concentration overpotential in SOFC anodes , 2017 .

[23]  M. Andersson,et al.  A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells , 2016 .

[24]  Min Xu,et al.  Modeling of an anode supported Solid Oxide Fuel Cell focusing on Thermal Stresses , 2016 .

[25]  Nadarajah Kannan,et al.  Solar energy for future world: - A review , 2016 .

[26]  Taufiq Abdullah,et al.  Simulation-based microstructural optimization of solid oxide fuel cell for low temperature operation , 2016 .

[27]  Mahmut D. Mat,et al.  A review on micro-level modeling of solid oxide fuel cells , 2016 .

[28]  M. Ni,et al.  Thermal aging stability of infiltrated solid oxide fuel cell electrode microstructures: A three-dimensional kinetic Monte Carlo simulation , 2015 .

[29]  Wei Kong,et al.  A Simple Expression for the Tortuosity of Gas Transport Paths in Solid Oxide Fuel Cells’ Porous Electrodes , 2015 .

[30]  K. S. Sandhu,et al.  Hybrid wind/photovoltaic energy system developments: Critical review and findings , 2015 .

[31]  F. Chen,et al.  New formulas for the tortuosity factor of electrochemically conducting channels , 2015 .

[32]  Murat Peksen,et al.  Numerical thermomechanical modelling of solid oxide fuel cells , 2015 .

[33]  Lin Liu,et al.  Phase Field Simulation Coupling Microstructural Evolution and Crack Propagation during Performance Degradation of Solid Oxide Fuel Cells , 2015 .

[34]  M. Ni,et al.  On the tortuosity factor of solid phase in solid oxide fuel cell electrodes , 2015 .

[35]  F. Chen,et al.  Tortuosity Factor of Three-Dimensional Infiltrate Network , 2014 .

[36]  H. Iwai,et al.  Tortuosity of an SOFC anode estimated from saturation currents and a mass transport model in comparison with a real micro-structure , 2014 .

[37]  B. Sundén,et al.  Comparison of humidified hydrogen and partly pre-reformed natural gas as fuel for solid oxide fuel cells applying computational fluid dynamics , 2014 .

[38]  Lin Liu,et al.  Peak Power Optimization of Solid Oxide Fuel Cells with Particle Size and Porosity Grading , 2014 .

[39]  Siwei Wang,et al.  Low temperature solid oxide fuel cells with hierarchically porous cathode nano-network , 2014 .

[40]  M. Ni,et al.  A Sintering Kinetics Model for Ceramic Dual‐Phase Composite , 2014 .

[41]  S. Senthil Kumar,et al.  Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review , 2014 .

[42]  B. Sundén,et al.  SOFC Cell Design Optimization Using the Finite Element Method Based CFD Approach , 2014 .

[43]  B. Sundén,et al.  SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants , 2013 .

[44]  H. Chandra,et al.  Application of solid oxide fuel cell technology for power generation—A review , 2013 .

[45]  A. Chandra,et al.  Modeling of Ni–CGO anode in a solid oxide fuel cell deposited by spray pyrolysis , 2012 .

[46]  A. Chandra,et al.  Modeling of Solid Oxide Fuel Cells with Particle Size and Porosity Grading in Anode Electrode , 2012 .

[47]  Wilson K. S. Chiu,et al.  A review of modeling and simulation techniques across the length scales for the solid oxide fuel cell , 2012 .

[48]  M. Ni,et al.  Simulation of sintering kinetics and microstructure evolution of composite solid oxide fuel cells electrodes , 2012 .

[49]  Bengt Sundén,et al.  SOFC modeling considering electrochemical reactions at the active three phase boundaries , 2012 .

[50]  N. Shikazono,et al.  Evaluation of SOFC anode polarization simulation using three-dimensional microstructures reconstructed by FIB tomography , 2011 .

[51]  A. Chandra,et al.  Microstructural and electrochemical impedance study of nickel–Ce0.9Gd0.1O1.95 anodes for solid oxide fuel cells fabricated by ultrasonic spray pyrolysis , 2011 .

[52]  E. Gileadi Physical Electrochemistry: Fundamentals, Techniques and Applications , 2011 .

[53]  D. Brett,et al.  Towards intelligent engineering of SOFC electrodes: a review of advanced microstructural characterisation techniques , 2010 .

[54]  A. Chandra,et al.  Fabrication of solid oxide fuel cell anode electrode by spray pyrolysis , 2010 .

[55]  Nigel P. Brandon,et al.  Microstructural analysis of a solid oxide fuel cell anode using focused ion beam techniques coupled with electrochemical simulation , 2010 .

[56]  Bengt Sundén,et al.  Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells , 2010 .

[57]  Abhijit Chandra,et al.  Modeling of thermal stresses and lifetime prediction of planar solid oxide fuel cell under thermal cycling conditions , 2010 .

[58]  H. Iwai,et al.  Quantitative Evaluation of Transport Properties of SOFC Porous Anode by Random Walk Process , 2009, ECS Transactions.

[59]  E. Wachsman,et al.  Three-Dimensional Reconstruction of Porous LSCF Cathodes , 2007 .

[60]  Dennis Y.C. Leung,et al.  Micro-scale modelling of solid oxide fuel cells with micro-structurally graded electrodes , 2007 .

[61]  Jon M. Hiller,et al.  Three-dimensional reconstruction of a solid-oxide fuel-cell anode , 2006, Nature materials.

[62]  S. Chan,et al.  A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness , 2001 .

[63]  Werner Lehnert,et al.  Modelling of gas transport phenomena in SOFC anodes , 2000 .

[64]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[65]  Lin Liu,et al.  Simulation of eco-friendly and affordable energy production via solid oxide fuel cell integrated with biomass gasification plant using various gasification agents , 2020 .

[66]  M. Andersson,et al.  Thermal stress analysis of solid oxide fuel cells with chromium poisoning cathodes , 2018 .

[67]  K. Kendall,et al.  Introduction to SOFCs , 2015 .

[68]  Michael J. Martínez,et al.  Measurement of MacMullin Numbers for PEMFC Gas-Diffusion Media , 2009 .

[69]  Stefano Ubertini,et al.  Mathematical Models: A General Overview , 2008 .

[70]  Y. Bultel,et al.  Modelling of a SOFC graded cathode , 2005 .

[71]  Norman Epstein,et al.  On tortuosity and the tortuosity factor in flow and diffusion through porous media , 1989 .