Digital Controller for Capacitance Stabilized Etalons

Fabry Pérot Interferometers in Capacitance Stabilized Etalon configuration are a key technology to obtain the physical properties of the solar plasma and the embedded magnetic fields at different heights in the solar atmosphere. This kind of data are fundamental both for synoptic programs and high spatial resolution new generation solar telescopes to understand the still unsolved mechanisms beneath space weather events such as solar flares and CMEs. In this paper we describe a new electronic controller for Capacitance Stabilized Etalons, based on digital approach. The controller allows digital filtering of the signal for higher stability as well as the possibility to switch operation mode as needed in the different phases of the scan and in different observing strategies.

[1]  Alexander Bell,et al.  A two-dimensional spectropolarimeter as a first-light instrument for the Daniel K. Inouye Solar Telescope , 2014, Astronomical Telescopes and Instrumentation.

[2]  Francesco Berrilli,et al.  Optical tests of the LUTIN Fabry-Pérot prototype , 2014 .

[3]  Francesco Berrilli,et al.  The telescope and the double Fabry-Pérot interferometer for the ADAHELI solar space mission , 2010, Astronomical Telescopes + Instrumentation.

[4]  J. C. del Toro Iniesta,et al.  On Fabry–Pérot Etalon-based Instruments. I. The Isotropic Case , 2019, The Astrophysical Journal Supplement Series.

[5]  Francesco Berrilli,et al.  The birth of Tor Vergata Fabry-Pérot interferometer , 2012 .

[6]  V. Greco,et al.  The ADAHELI solar mission: Investigating the structure of Sun's lower atmosphere , 2010 .

[7]  I. Mcwhirter,et al.  A stable, rugged, capacitance-stabilised piezoelectric scanned Fabry-Perot etalon , 1981 .

[8]  Ermanno Pietropaolo,et al.  JP3D compression of solar data-cubes: Photospheric imaging and spectropolarimetry , 2017, 1705.06611.

[9]  Francesco Berrilli,et al.  The Fabry-Perot interferometer prototype for the ADAHELI solar small mission , 2011, Optical Engineering + Applications.

[10]  Mats Carlsson,et al.  Three-dimensional modeling of the Ca II H and K lines in the solar atmosphere , 2017, 1712.01045.

[11]  Guus Sliepen,et al.  Is the sky the limit? , 2019, Astronomy & Astrophysics.

[12]  Robert P. Hubbard,et al.  Construction status of the Daniel K. Inouye solar telescope , 2016, Astronomical Telescopes + Instrumentation.

[13]  Stuart M. Jefferies,et al.  ADAHELI+: exploring the fast, dynamic Sun in the x-ray, optical, and near-infrared , 2015 .

[14]  Mats G. Lofdahl,et al.  CRISP Spectropolarimetric Imaging of Penumbral Fine Structure , 2008, 0806.1638.

[15]  Francesco Berrilli,et al.  IBIS: A Purely Interferometric Instrument for Solar Bidimensional Spectroscopy , 2000 .

[16]  Rolf Schlichenmaier,et al.  Recent advancements in the EST project , 2018, Advances in Space Research.

[17]  Francesco Berrilli,et al.  Optical cavity characterization of the Tor Vergata Fabry-Pérot interferometer , 2014, Astronomical Telescopes and Instrumentation.

[18]  A. Tritschler,et al.  High-resolution solar spectroscopy with TESOS – Upgrade from a double to a triple system , 2002 .

[19]  F. Cavallini IBIS: A New Post-Focus Instrument for Solar Imaging Spectroscopy , 2006 .

[20]  J. Staiger HELLRIDE: a new interferometric multiline instrument for the analysis of the solar atmosphere , 2012, Other Conferences.

[21]  H. Nicklas,et al.  The GREGOR Fabry‐Pérot Interferometer , 2012, 1210.2921.

[22]  R. Piazzesi,et al.  IBIS : High-Resolution Multi-Height Observations and Magnetic Field Retrieval , 2013 .

[23]  Francesco Berrilli,et al.  Testing of the "Tor Vergata" Fabry-Pérot interferometer prototype , 2012, Other Conferences.