WEAKLY PICARD OPERATORS: EQUIVALENT DEFINITIONS, APPLICATIONS AND OPEN PROBLEMS
暂无分享,去创建一个
[1] Giuseppe Marino,et al. The use of the E-metric spaces in the search for fixed points , 1994 .
[2] I. Rus. Weakly Picard mappings , 1993 .
[3] Iterates of Bernstein operators, via contraction principle , 2004 .
[4] Evidence of a conspiracy among fixed point theorems , 1975 .
[5] V. Lakshmikantham,et al. Remarks on Nonlinear Contraction and Comparison Principle in Abstract Cones , 1977 .
[6] A converse to a contraction mapping theorem in uniform spaces , 1988 .
[7] J. Jachymski,et al. Equivalence of some contractivity properties over metrical structures , 1997 .
[8] Berthold Schweizer,et al. Contractions on probabilistic metric spaces: examples and counterexamples. , 1988 .
[9] W. A. Kirk,et al. Handbook of metric fixed point theory , 2001 .
[10] L. Collatz. Functional analysis and numerical mathematics , 1968 .
[11] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[12] J. Caristi,et al. Fixed point theorems for mapping satisfying inwardness conditions , 1976 .
[13] Iterations and fixpoints. , 1977 .
[14] I. Rus. WEAKLY PICARD OPERATORS AND APPLICATIONS , 2001 .
[15] Periodic Points and Contractive Mappings , 1974, Canadian Mathematical Bulletin.
[16] A. Brøndsted. Fixed points and partial orders , 1976 .
[17] M. Kuczma. Functional equations in a single variable , 1968 .
[18] A. Petruşel. MULTIVALUED WEAKLY PICARD OPERATORS AND APPLICATIONS : Dedicated to the memory of Shouro Kasahara , 2004 .
[19] Generalizations of the Converse of the Contraction Mapping Principle , 1966, Canadian Journal of Mathematics.
[20] PSEUDOMETRIC VERSIONS OF THE CARISTI-KIRK FIXED POINT THEOREM , 2004 .
[21] M. Fréchet,et al. Les espaces abstraits , 1929 .
[22] A short proof of the converse to the contraction principle and some related results , 2000 .
[23] A. Brøndsted,et al. On a lemma of Bishop and Phelps , 1974 .
[24] Hideaki Kaneko,et al. A Banach type fixed point theorem for multi-valued mapping , 1984 .
[25] I. N. Baker. Permutable power series and regular iteration , 1962, Journal of the Australian Mathematical Society.
[26] Solomon Leader. Uniformly contractive fixed points in compact metric spaces , 1982 .
[27] W. A. Kirk,et al. The B rézis–Browder order principle and extensions of Caristi’s theorem , 2001 .
[28] Some results on existence and approximation in metric fixed point theory , 2000 .
[29] Leo F. Boron,et al. Positive solutions of operator equations , 1964 .
[30] P. Hitzler,et al. A "Converse" of the Banach Contraction Mapping Theorem , 2001 .
[31] Les espaces abstraits et leur theorie considérée comme introduction a I'analyse générale , 1929 .
[32] K. Deimling. Nonlinear functional analysis , 1985 .
[33] P. P. Zabrejko. K-metric and K-normed linear spaces: survey. , 1997 .
[34] The Banach contraction mapping principle and cohomology , 2000 .
[35] Iterates of a class of discrete linear operators via contraction principle , 2003 .
[36] C. Bessaga. On the converse of Banach "fixed-point principle" , 1959 .
[37] A Reuniformization for Contractive Mappings in Uniform Spaces , 1986 .
[38] Endre Pap,et al. Fixed Point Theory in Probabilistic Metric Spaces , 2001 .
[39] Ludvík Janoš. A converse of Banach’s contraction theorem , 1967 .
[40] Converses to fixed point theorems of Zermelo and Caristi , 2003 .
[41] E. Pap,et al. Generalized contraction mapping principles in probabilistic metric spaces , 2003 .