WEAKLY PICARD OPERATORS: EQUIVALENT DEFINITIONS, APPLICATIONS AND OPEN PROBLEMS

The purpose of this paper is to present several characterizations for the concept of weakly Picard operator in K-metric spaces. Some new characterizations and applications, as well as, several open questions are also discussed.

[1]  Giuseppe Marino,et al.  The use of the E-metric spaces in the search for fixed points , 1994 .

[2]  I. Rus Weakly Picard mappings , 1993 .

[3]  Iterates of Bernstein operators, via contraction principle , 2004 .

[4]  Evidence of a conspiracy among fixed point theorems , 1975 .

[5]  V. Lakshmikantham,et al.  Remarks on Nonlinear Contraction and Comparison Principle in Abstract Cones , 1977 .

[6]  A converse to a contraction mapping theorem in uniform spaces , 1988 .

[7]  J. Jachymski,et al.  Equivalence of some contractivity properties over metrical structures , 1997 .

[8]  Berthold Schweizer,et al.  Contractions on probabilistic metric spaces: examples and counterexamples. , 1988 .

[9]  W. A. Kirk,et al.  Handbook of metric fixed point theory , 2001 .

[10]  L. Collatz Functional analysis and numerical mathematics , 1968 .

[11]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[12]  J. Caristi,et al.  Fixed point theorems for mapping satisfying inwardness conditions , 1976 .

[13]  Iterations and fixpoints. , 1977 .

[14]  I. Rus WEAKLY PICARD OPERATORS AND APPLICATIONS , 2001 .

[15]  Periodic Points and Contractive Mappings , 1974, Canadian Mathematical Bulletin.

[16]  A. Brøndsted Fixed points and partial orders , 1976 .

[17]  M. Kuczma Functional equations in a single variable , 1968 .

[18]  A. Petruşel MULTIVALUED WEAKLY PICARD OPERATORS AND APPLICATIONS : Dedicated to the memory of Shouro Kasahara , 2004 .

[19]  Generalizations of the Converse of the Contraction Mapping Principle , 1966, Canadian Journal of Mathematics.

[20]  PSEUDOMETRIC VERSIONS OF THE CARISTI-KIRK FIXED POINT THEOREM , 2004 .

[21]  M. Fréchet,et al.  Les espaces abstraits , 1929 .

[22]  A short proof of the converse to the contraction principle and some related results , 2000 .

[23]  A. Brøndsted,et al.  On a lemma of Bishop and Phelps , 1974 .

[24]  Hideaki Kaneko,et al.  A Banach type fixed point theorem for multi-valued mapping , 1984 .

[25]  I. N. Baker Permutable power series and regular iteration , 1962, Journal of the Australian Mathematical Society.

[26]  Solomon Leader Uniformly contractive fixed points in compact metric spaces , 1982 .

[27]  W. A. Kirk,et al.  The B rézis–Browder order principle and extensions of Caristi’s theorem , 2001 .

[28]  Some results on existence and approximation in metric fixed point theory , 2000 .

[29]  Leo F. Boron,et al.  Positive solutions of operator equations , 1964 .

[30]  P. Hitzler,et al.  A "Converse" of the Banach Contraction Mapping Theorem , 2001 .

[31]  Les espaces abstraits et leur theorie considérée comme introduction a I'analyse générale , 1929 .

[32]  K. Deimling Nonlinear functional analysis , 1985 .

[33]  P. P. Zabrejko K-metric and K-normed linear spaces: survey. , 1997 .

[34]  The Banach contraction mapping principle and cohomology , 2000 .

[35]  Iterates of a class of discrete linear operators via contraction principle , 2003 .

[36]  C. Bessaga On the converse of Banach "fixed-point principle" , 1959 .

[37]  A Reuniformization for Contractive Mappings in Uniform Spaces , 1986 .

[38]  Endre Pap,et al.  Fixed Point Theory in Probabilistic Metric Spaces , 2001 .

[39]  Ludvík Janoš A converse of Banach’s contraction theorem , 1967 .

[40]  Converses to fixed point theorems of Zermelo and Caristi , 2003 .

[41]  E. Pap,et al.  Generalized contraction mapping principles in probabilistic metric spaces , 2003 .