An illusory transformation in a model of optic flow processing

[1]  M. Clare,et al.  Responses from an association area secondarily activated from optic cortex. , 1954, Journal of neurophysiology.

[2]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[3]  Andrea J. van Doorn,et al.  Invariant Properties of the Motion Parallax Field due to the Movement of Rigid Bodies Relative to an Observer , 1975 .

[4]  P. D. Spear,et al.  Receptive-field characteristics of single neurons in lateral suprasylvian visual area of the cat. , 1975, Journal of neurophysiology.

[5]  L. Palmer,et al.  The retinotopic organization of lateral suprasylvian visual areas in the cat , 1978, The Journal of comparative neurology.

[6]  H. C. Longuet-Higgins,et al.  The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[7]  D Regan,et al.  How do we avoid confounding the direction we are looking and the direction we are moving? , 1982, Science.

[8]  Berthold K. P. Horn,et al.  Passive navigation , 1982, Comput. Vis. Graph. Image Process..

[9]  J H Rieger,et al.  Processing differential image motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[10]  Keiji Tanaka,et al.  Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  J. Rauschecker,et al.  Centrifugal organization of direction preferences in the cat's lateral suprasylvian visual cortex and its relation to flow field processing , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  Daniel J. Hannon,et al.  Direction of self-motion is perceived from optical flow , 1988, Nature.

[13]  J P Rauschecker,et al.  Visual function of the cat's LP/LS subsystem in global motion processing. , 1988, Progress in brain research.

[14]  W. Warren,et al.  Perception of translational heading from optical flow. , 1988, Journal of experimental psychology. Human perception and performance.

[15]  T. Poggio,et al.  A parallel algorithm for real-time computation of optical flow , 1989, Nature.

[16]  Christof Koch,et al.  Linking Linear Threshold Units with Quadratic Models of Motion Perception , 1989, Neural Computation.

[17]  A. Verri,et al.  Mathematical properties of the two-dimensional motion field: from singular points to motion parameters , 1989 .

[18]  F A Miles,et al.  Ocular responses to linear motion are inversely proportional to viewing distance. , 1989, Science.

[19]  K. Tanaka,et al.  Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. , 1989, Journal of neurophysiology.

[20]  Christof Koch,et al.  Computing Optical Flow in the Primate Visual System , 1989, Neural Computation.

[21]  D J Hannon,et al.  Eye movements and optical flow. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[22]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[23]  J. Rauschecker,et al.  Centrifugal motion bias in the cat's lateral suprasylvian visual cortex is independent of early flow field exposure. , 1990, The Journal of physiology.

[24]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. , 1991, Journal of neurophysiology.

[25]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. , 1991, Journal of neurophysiology.

[26]  Nicholas G. Hatsopoulos,et al.  Visual navigation with a neural network , 1991, Neural Networks.

[27]  A. Verri,et al.  Computational aspects of motion perception in natural and artificial vision systems. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[28]  Markus Lappe,et al.  Computation of Heading Direction from Optic Flow in Visual Cortex , 1992, NIPS.

[29]  Paul A. Braren,et al.  Wayfinding on foot from information in retinal, not optical, flow. , 1992, Journal of experimental psychology. General.

[30]  J A Perrone,et al.  Model for the computation of self-motion in biological systems. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[31]  Ellen C. Hildreth,et al.  Recovering Heading for Visually Guided Navigation in the Presence of Self-Moving Objects , 1992 .

[32]  Ellen C. Hildreth,et al.  Recovering heading for visually-guided navigation , 1992, Vision Research.

[33]  James A. Crowell,et al.  The perception of heading during eye movements , 1992, Nature.

[34]  B. Cohen,et al.  Stabilization of gaze during circular locomotion in light. I. Compensatory head and eye nystagmus in the running monkey. , 1992, Journal of neurophysiology.

[35]  R. Wurtz,et al.  An illusory transformation of optic flow fields , 1993, Vision Research.

[36]  Markus Lappe,et al.  A Neural Network for the Processing of Optic Flow from Ego-Motion in Man and Higher Mammals , 1993, Neural Computation.

[37]  Kechen Zhang,et al.  Emergence of Position-Independent Detectors of Sense of Rotation and Dilation with Hebbian Learning: An Analysis , 1999, Neural Computation.

[38]  A. V. van den Berg Perception of heading , 1993, Nature.

[39]  Markus Lappe,et al.  Heading detection from optic flow , 1994, Nature.

[40]  Frank Bremmer,et al.  How To Use Non-Visual Information for Optic Flow Processing in Monkey Visual Cortical Area MSTd , 1994 .

[41]  M. Graziano,et al.  Tuning of MST neurons to spiral motions , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.