Dynamic supramacromolecular self-assembly: deformable polymer fabricated nanostructures through a host-controlled approach

Host molecules (α-CD) hierarchically thread onto the double grafts of the comb-copolymer EC-g-PCL-b-PEO from the outer block to the inner block in aqueous solution. Adjusting the molar ratio between α-CD and copolymer can induce these supramacromolecular complexes to dynamically and reversibly self-tune their fabrication from micelles (0-D) to cylinders (1-D) to vesicles (3-D) to sheets (2-D) like “living” assemblies.

[1]  Xi Zhang,et al.  Redox responsive supramolecular amphiphiles based on reversible charge transfer interactions. , 2009, Chemical communications.

[2]  Jie Ren,et al.  Supramolecular polyseudorotaxanes formation between star‐block copolymer and α‐cyclodextrin: From outer block to diblock inclusion complexation , 2009 .

[3]  A. Ajayaghosh,et al.  Reversible transformation between rings and coils in a dynamic hydrogen-bonded self-assembly. , 2009, Journal of the American Chemical Society.

[4]  D. Weibel,et al.  Bacterial Swarming: A Model System for Studying Dynamic Self-assembly. , 2009, Soft matter.

[5]  J. Szostak,et al.  Coupled Growth and Division of Model Protocell Membranes , 2009, Journal of the American Chemical Society.

[6]  S. Rowan Polymer self-assembly: Micelles make a living. , 2009, Nature materials.

[7]  Shouchun Yin,et al.  Controlled self-assembly manipulated by charge-transfer interactions: from tubes to vesicles. , 2008, Angewandte Chemie.

[8]  R. B. Grubbs,et al.  Reversible restructuring of aqueous block copolymer assemblies through stimulus-induced changes in amphiphilicity. , 2008, Journal of the American Chemical Society.

[9]  G. Hadziioannou,et al.  Multiblock copolymer behaviour of α-CD/PEO-based polyrotaxanes: towards nano-cylinder self-organization of α-CDs , 2008 .

[10]  Haiqing Dong,et al.  A facile one-pot construction of supramolecular polymer micelles from alpha-cyclodextrin and poly(epsilon-caprolactone). , 2008, Angewandte Chemie.

[11]  D. Liang,et al.  Supramolecular ABA Triblock Copolymer with Polyrotaxane as B Block and Its Hierarchical Self-Assembly , 2008 .

[12]  Miriam V. Flores-Merino,et al.  Block copolymer nanostructures , 2008 .

[13]  Ryan C Hayward,et al.  Spontaneous generation of amphiphilic block copolymer micelles with multiple morphologies through interfacial Instabilities. , 2008, Journal of the American Chemical Society.

[14]  Sheng Zhong,et al.  Block Copolymer Assembly via Kinetic Control , 2007, Science.

[15]  Yuting Li,et al.  Thermally responsive vesicles and their structural "locking" through polyelectrolyte complex formation. , 2006, Angewandte Chemie.

[16]  Xikui Liu,et al.  Optical switching of self-assembly: micellization and micelle-hollow-sphere transition of hydrogen-bonded polymers. , 2006, Angewandte Chemie.

[17]  C. McCormick,et al.  Direct Synthesis of Thermally Responsive DMA/NIPAM Diblock and DMA/NIPAM/DMA Triblock Copolymers via Aqueous, Room Temperature RAFT Polymerization† , 2006 .

[18]  S. Armes,et al.  pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. , 2005, Journal of the American Chemical Society.

[19]  Yongfeng Zhou,et al.  Real-time membrane fusion of giant polymer vesicles. , 2005, Journal of the American Chemical Society.

[20]  Sébastien Lecommandoux,et al.  Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers. , 2005, Journal of the American Chemical Society.

[21]  Taehyung Kim,et al.  From cylinders to helices upon confinement , 2005 .

[22]  Bartosz A. Grzybowski,et al.  Complexity and dynamic self-assembly , 2004 .

[23]  Martin Müller,et al.  Oxidation-responsive polymeric vesicles , 2004, Nature materials.

[24]  F. Bates,et al.  Single Molecule Visualization of Stable, Stiffness-Tunable, Flow-Conforming Worm Micelles , 2003 .

[25]  T. Lodge,et al.  Micellar shape change and internal segregation induced by chemical modification of a tryptych block copolymer surfactant. , 2003, Journal of the American Chemical Society.

[26]  Frank S Bates,et al.  On the Origins of Morphological Complexity in Block Copolymer Surfactants , 2003, Science.

[27]  A. Tonelli,et al.  Competitive Formation of Polymer−Cyclodextrin Inclusion Compounds , 2003 .

[28]  Jean-Marie Lehn,et al.  Toward Self-Organization and Complex Matter , 2002, Science.

[29]  George M. Whitesides,et al.  Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid–air interface , 2000, Nature.

[30]  A. Harada,et al.  Complex Formation of Poly(ε-caprolactone) with Cyclodextrins , 2000 .

[31]  R. Breslow,et al.  Biomimetic Reactions Catalyzed by Cyclodextrins and Their Derivatives. , 1998, Chemical reviews.

[32]  Akira Harada,et al.  Complex formation between poly(ethylene glycol) and α-cyclodextrin , 1990 .

[33]  Dennis E. Discher,et al.  Polymer vesicles : Materials science: Soft surfaces , 2002 .

[34]  D. Bartel,et al.  Synthesizing life : Paths to unforeseeable science & technology , 2001 .

[35]  B. Ninham,et al.  Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers , 1976 .