Effects of H2S and H2O on carbon deposition over La0.4Sr0.5Ba0.1TiO3/YSZ perovskite anodes in methane fueled SOFCs

[1]  Jingli Luo,et al.  Porous YSZ impregnated with La0.4Sr0.5Ba0.1TiO3 as a possible composite anode for SOFCs fueled with sour feeds , 2012 .

[2]  Jingli Luo,et al.  Effect of hydrogen sulfide inclusion in syngas feed on the electrocatalytic activity of LST-YDC composite anodes for high temperature SOFC applications , 2012 .

[3]  Jingli Luo,et al.  Promotion of activation of CH4 by H2S in oxidation of sour gas over sulfur tolerant SOFC anode catalysts , 2011 .

[4]  Jingli Luo,et al.  Effect of Hydrogen Sulfide on Electrochemical Oxidation of Syngas for SOFC Applications , 2011 .

[5]  J. Hill,et al.  Anode- versus electrolyte-supported Ni-YSZ/YSZ/Pt SOFCs: Effect of cell design on OCV, performance a , 2011 .

[6]  Jingli Luo,et al.  Carbon Deposition on Vanadium-Based Anode Catalyst for SOFC Using Syngas as Fuel , 2010 .

[7]  Hyunjoon Lee,et al.  Sn-doped Ni/YSZ anode catalysts with enhanced carbon deposition resistance for an intermediate temperature SOFC , 2010 .

[8]  Jingli Luo,et al.  Effect of Ba doping on performance of LST as anode in solid oxide fuel cells , 2010 .

[9]  Shuo Chen,et al.  Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. , 2009, Journal of the American Chemical Society.

[10]  S. McIntosh,et al.  The Influence of Current Density on the Electrocatalytic Activity of Oxide-Based Direct Hydrocarbon SOFC Anodes , 2008 .

[11]  Xiufu Sun,et al.  Anode performance of LST-xCeO2 for solid oxide fuel cells , 2008 .

[12]  Yves U. Idzerda,et al.  Mechanism for SOFC anode degradation from hydrogen sulfide exposure , 2008 .

[13]  Josephine M. Hill,et al.  Effect of anodic polarization on carbon deposition on Ni/YSZ anodes exposed to methane , 2008 .

[14]  Catherine M. Grgicak,et al.  SOFC anodes for direct oxidation of hydrogen and methane fuels containing H2S , 2008 .

[15]  Michael B. Pomfret,et al.  Hydrocarbon Fuels in Solid Oxide Fuel Cells: In Situ Raman Studies of Graphite Formation and Oxidation , 2008 .

[16]  A. T-Raissi,et al.  Liquid hydrogen production via hydrogen sulfide methane reformation , 2008 .

[17]  Michael D. Gross,et al.  Recent progress in SOFC anodes for direct utilization of hydrocarbons , 2007 .

[18]  Christopher S. Johnson,et al.  Sulfur-tolerant anode materials for solid oxide fuel cell application , 2007 .

[19]  Hongpeng He,et al.  Carbon deposition on Ni/YSZ composites exposed to humidified methane , 2007 .

[20]  Yury Gogotsi,et al.  Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. , 2006, Journal of the American Chemical Society.

[21]  Taeyoon Kim,et al.  A study of carbon formation and prevention in hydrocarbon-fueled SOFC , 2006 .

[22]  Zhe Cheng,et al.  A Solid Oxide Fuel Cell Running on H2S ∕ CH4 Fuel Mixtures , 2006 .

[23]  J. Vohs,et al.  Carbonaceous deposits in direct utilization hydrocarbon SOFC anode , 2005 .

[24]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[25]  Mogens Bjerg Mogensen,et al.  Conversion of Hydrocarbons in Solid Oxide Fuel Cells , 2003 .

[26]  J. Armor,et al.  Studying carbon formation at elevated pressure , 2001 .

[27]  S. A. Barnett,et al.  A direct-methane fuel cell with a ceria-based anode , 1999, Nature.

[28]  Andrew Murray,et al.  Cell cycle: A snip separates sisters , 1999, Nature.

[29]  Kai Xu,et al.  FTIR study of ultradispersed diamond powder synthesized by explosive detonation , 1995 .

[30]  C. D. Wagner X‐ray photoelectron spectroscopy with x‐ray photons of higher energy , 1978 .

[31]  C. Nordling,et al.  Molecular Spectroscopy by Means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure , 1970 .