Knee ligaments mechanics

Acting as track rod for joints, knee ligaments are viscoelastic complex structures which are loaded up to damage and failure during trauma situations. This paper presents 10 years of joint research at the Laboratory of Biomechanics and Application and the Laboratory of Acoustics and Mechanics in investigating the mechanical behaviour of such structures. Staring from clinical knowledge, we show, how experimental, histological, theoretical and FE simulation approaches have been performed to investigate such the behaviour of such structures.

[1]  P. H. Dehoff,et al.  A Constitutive Equation for the Canine Anterior Cruciate Ligament , 1979 .

[2]  A. Amis,et al.  The mechanical properties of the two bundles of the human posterior cruciate ligament. , 1994, Journal of biomechanics.

[3]  Florence Andrieux Sur les milieux visco-hyperélastiques endommageables , 1996 .

[4]  Y Lanir,et al.  A microstructure model for the rheology of mammalian tendon. , 1980, Journal of biomechanical engineering.

[5]  Pierre Jean Arnoux,et al.  Knee ligament failure under dynamic loadings , 2002 .

[6]  Docteur Guy Liorzou Le genou ligamentaire , 1995, Springer Berlin Heidelberg.

[7]  H. Demiray A note on the elasticity of soft biological tissues. , 1972, Journal of biomechanics.

[8]  Samuel Bidal Reconstruction tridimensionnelle d'éléments anatomiques et génération automatique de maillages éléments finis optimisés , 2003 .

[9]  S. Woo,et al.  Mechanical properties of tendons and ligaments. I. Quasi-static and nonlinear viscoelastic properties. , 1982, Biorheology.

[10]  C B Frank,et al.  The effects of temperature on the viscoelastic properties of the rabbit medial collateral ligament. , 1990, Journal of biomechanical engineering.

[11]  Y. Fung,et al.  Biomechanics: Mechanical Properties of Living Tissues , 1981 .

[12]  E. Baer,et al.  Collagen; ultrastructure and its relation to mechanical properties as a function of ageing , 1972, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[13]  J Bonnoit,et al.  A Visco-hyperelastic Model With Damage for the Knee Ligaments Under Dynamic Constraints , 2002, Computer methods in biomechanics and biomedical engineering.

[14]  D. Subit,et al.  Modélisation de la liaison os-ligament dans l'articulation du genou , 2004 .

[15]  H Duruz,et al.  [The traumatized knee]. , 1998, Revue medicale de la Suisse romande.

[16]  N. Sasaki,et al.  Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. , 1996, Journal of biomechanics.

[17]  Y. Fung,et al.  Biorheology of soft tissues. , 1973, Biorheology.

[18]  P. H. Dehoff,et al.  On the nonlinear viscoelastic behavior of soft biological tissues. , 1978, Journal of biomechanics.

[19]  J. Chaboche Continuum Damage Mechanics: Part I—General Concepts , 1988 .

[20]  A Viidik,et al.  Rheological analysis of soft collagenous tissue. Part I: theoretical considerations. , 1969, Journal of biomechanics.

[21]  S L Woo,et al.  Mathematical modeling of ligaments and tendons. , 1993, Journal of biomechanical engineering.

[22]  R Vanderby,et al.  A structurally based stress-stretch relationship for tendon and ligament. , 1997, Journal of biomechanical engineering.

[23]  F. Noyes,et al.  The strength of the anterior cruciate ligament in humans and Rhesus monkeys. , 1976, The Journal of bone and joint surgery. American volume.

[24]  J D Humphrey,et al.  A new constitutive formulation for characterizing the mechanical behavior of soft tissues. , 1987, Biophysical journal.

[25]  S. Woo,et al.  A structural model to describe the nonlinear stress-strain behavior for parallel-fibered collagenous tissues. , 1989, Journal of biomechanical engineering.

[26]  S. Belkoff,et al.  A failure model for ligaments. , 1999, Journal of biomechanics.

[27]  Georges Winckler,et al.  Manuel d'anatomie topographique et fonctionnelle , 1974 .

[28]  W F Decraemer,et al.  A thermodynamically consistent constitutive equation for the elastic force-length relation of soft biological materials. , 1989, Journal of biomechanics.

[29]  Martine Pithioux,et al.  Numerical damage models using a structural approach: application in bones and ligaments , 2002 .

[30]  N. Sasaki,et al.  Stress-strain curve and Young's modulus of a collagen molecule as determined by the X-ray diffraction technique. , 1996, Journal of biomechanics.

[31]  S. Woo,et al.  Tensile properties of the human femur-anterior cruciate ligament-tibia complex , 1991, The American journal of sports medicine.

[32]  L. Kachanov,et al.  Rupture Time Under Creep Conditions , 1999 .

[33]  Mhj Koch,et al.  Quantitative analysis of the molecular sliding mechanisms in native tendon collagen — time-resolved dynamic studies using synchrotron radiation , 1987 .

[34]  F R Noyes,et al.  Biomechanics of anterior cruciate ligament failure: an analysis of strain-rate sensitivity and mechanisms of failure in primates. , 1974, The Journal of bone and joint surgery. American volume.

[35]  D L Butler,et al.  In vivo forces in the anterior cruciate ligament: direct measurements during walking and trotting in a quadruped. , 1994, Journal of biomechanics.

[36]  M. Koch,et al.  Stress-induced molecular rearrangement in tendon collagen. , 1985, Journal of molecular biology.

[37]  Y. Lanir Constitutive equations for fibrous connective tissues. , 1983, Journal of biomechanics.

[38]  P. Germain,et al.  Cours de mécanique des milieux continus , 1973 .

[39]  I. Yannas,et al.  Dependence of stress-strain nonlinearity of connective tissues on the geometry of collagen fibers. , 1976, Journal of biomechanics.

[40]  L Blankevoort,et al.  The effect of variable relative insertion orientation of human knee bone-ligament-bone complexes on the tensile stiffness. , 1995, Journal of biomechanics.

[41]  T. Mommersteeg,et al.  Characterization of the mechanical behavior of human knee ligaments: a numerical-experimental approach. , 1996, Journal of biomechanics.