Polyclonal lymphoid expansion drives paraneoplastic autoimmunity in neuroblastoma.

[1]  J. Crawford,et al.  Neuroblastoma Formation Requires Unconventional CD4 T Cells and Arginase-1–Dependent Myeloid Cells , 2021, Cancer Research.

[2]  P. Mundra,et al.  The T cell receptor repertoire of tumor infiltrating T cells is predictive and prognostic for cancer survival , 2021, Nature Communications.

[3]  R. Soose,et al.  B cell signatures and tertiary lymphoid structures contribute to outcome in head and neck squamous cell carcinoma , 2021, Nature Communications.

[4]  S. Fan,et al.  Single-cell profiling of tumor-infiltrating TCF1/TCF7+ T cells reveals a T lymphocyte subset associated with tertiary lymphoid structures/organs and a superior prognosis in oral cancer. , 2021, Oral oncology.

[5]  A. Zippelius,et al.  Tertiary Lymphoid Structures as a Predictive Biomarker of Response to Cancer Immunotherapies , 2021, Frontiers in Immunology.

[6]  Cristina Valencia-Sanchez,et al.  Paraneoplastic Neurological Syndromes and Beyond Emerging With the Introduction of Immune Checkpoint Inhibitor Cancer Immunotherapy , 2021, Frontiers in Neurology.

[7]  Mark M. Davis,et al.  Global analysis of shared T cell specificities in human non-small cell lung cancer enables HLA inference and antigen discovery , 2021, Immunity.

[8]  A. Anderson,et al.  T cell factor 1: A master regulator of the T cell response in disease , 2020, Science Immunology.

[9]  Heather L. Mulder,et al.  Pan-neuroblastoma analysis reveals age- and signature-associated driver alterations , 2020, Nature Communications.

[10]  S. Sadegh-Nasseri,et al.  The love and hate relationship of HLA-DM/DO in the selection of immunodominant epitopes. , 2020, Current opinion in immunology.

[11]  W. Jones,et al.  RNA Immune Signatures from Pan-Cancer Analysis Are Prognostic for High-Grade Serous Ovarian Cancer and Other Female Cancers , 2020, Cancers.

[12]  David L. Gibbs Robust classification of Immune Subtypes in Cancer , 2020, bioRxiv.

[13]  Jeffrey E. Lee,et al.  B cells and tertiary lymphoid structures promote immunotherapy response , 2020, Nature.

[14]  D. Schadendorf,et al.  Tertiary lymphoid structures improve immunotherapy and survival in melanoma , 2020, Nature.

[15]  J. Thurman,et al.  Targeting the Immune Complex–Bound Complement C3d Ligand as a Novel Therapy for Lupus , 2019, The Journal of Immunology.

[16]  C. Geis,et al.  An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models , 2019, The Lancet Neurology.

[17]  B. Haas,et al.  Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods , 2019, Genome Biology.

[18]  Wei Jiang,et al.  Synergy between B cell receptor/antigen uptake and MHCII peptide editing relies on HLA-DO tuning , 2019, Scientific Reports.

[19]  V. Lennon,et al.  Neurologic Autoimmunity in the Era of Checkpoint Inhibitor Cancer Immunotherapy. , 2019, Mayo Clinic proceedings.

[20]  E. Yeh,et al.  An upfront immunomodulatory therapy protocol for pediatric opsoclonus‐myoclonus syndrome , 2019, Pediatric blood & cancer.

[21]  M. Kazanietz,et al.  CXCL13 and Its Receptor CXCR5 in Cancer: Inflammation, Immune Response, and Beyond , 2019, Front. Endocrinol..

[22]  Gur Yaari,et al.  RAbHIT: R Antibody Haplotype Inference Tool , 2019, Bioinform..

[23]  C. Sautès-Fridman,et al.  Tertiary lymphoid structures in the era of cancer immunotherapy , 2019, Nature Reviews Cancer.

[24]  Edith M. Ross,et al.  The Genomic and Immune Landscapes of Lethal Metastatic Breast Cancer , 2019, Cell reports.

[25]  G. Westbrook,et al.  Autoimmune receptor encephalitis in mice induced by active immunization with conformationally stabilized holoreceptors , 2019, Science Translational Medicine.

[26]  S. Varambally,et al.  Molecular Correlates of Metastasis by Systematic Pan-Cancer Analysis Across The Cancer Genome Atlas , 2018, Molecular Cancer Research.

[27]  F. Barone,et al.  Tertiary Lymphoid Structures: Autoimmunity Goes Local , 2018, Front. Immunol..

[28]  A. Vincent,et al.  Glutamate receptor δ2 serum antibodies in pediatric opsoclonus myoclonus ataxia syndrome , 2018, Neurology.

[29]  Jing Zhao,et al.  Paraneoplastic limbic encephalitis associated with lung cancer , 2018, Scientific Reports.

[30]  M. Fehlings,et al.  Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates , 2018, Nature.

[31]  Peter W. Laird,et al.  Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer , 2018, Cell.

[32]  Steven J. M. Jones,et al.  The Immune Landscape of Cancer , 2018, Immunity.

[33]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[34]  Calliope A. Dendrou,et al.  HLA variation and disease , 2018, Nature Reviews Immunology.

[35]  H. Budka,et al.  Phenotypic and functional complexity of brain-infiltrating T cells in Rasmussen encephalitis , 2017, Neurology: Neuroimmunology & Neuroinflammation.

[36]  M. Ohira,et al.  Neurocan, an extracellular chondroitin sulfate proteoglycan, stimulates neuroblastoma cells to promote malignant phenotypes , 2017, Oncotarget.

[37]  A. Naranjo,et al.  Intravenous immunoglobulin with prednisone and risk-adapted chemotherapy for children with opsoclonus myoclonus ataxia syndrome associated with neuroblastoma (ANBL00P3): a randomised, open-label, phase 3 trial , 2017, The Lancet. Child & adolescent health.

[38]  O. Delattre,et al.  Genomic Profiles of Neuroblastoma Associated With Opsoclonus Myoclonus Syndrome , 2017, Journal of pediatric hematology/oncology.

[39]  Tetsuro Nakamura,et al.  Clinicopathological features of neuroblastic tumors with opsoclonus‐myoclonus‐ataxia syndrome: Follicular structure predicts a better neurological outcome , 2017, Pathology international.

[40]  Chad C. Brown,et al.  HLAProfiler utilizes k-mer profiles to improve HLA calling accuracy for rare and common alleles in RNA-seq data , 2017, Genome Medicine.

[41]  R. Förster,et al.  T cell specific Cxcr5 deficiency prevents rheumatoid arthritis , 2017, Scientific Reports.

[42]  P. Bradley,et al.  Quantifiable predictive features define epitope-specific T cell receptor repertoires , 2017, Nature.

[43]  S. Schuierer,et al.  A comprehensive assessment of RNA-seq protocols for degraded and low-quantity samples , 2017, BMC Genomics.

[44]  J. Aerts,et al.  SCENIC: Single-cell regulatory network inference and clustering , 2017, Nature Methods.

[45]  Scott Lundberg,et al.  A Unified Approach to Interpreting Model Predictions , 2017, NIPS.

[46]  Andrea Rau,et al.  Clustering transformed compositional data using K-means, with applications in gene expression and bicycle sharing system data , 2017, 1704.06150.

[47]  William S. DeWitt,et al.  Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire , 2017, Nature Genetics.

[48]  Jessica A. Weber,et al.  The Sentieon Genomics Tools – A fast and accurate solution to variant calling from next-generation sequence data , 2017, bioRxiv.

[49]  G. Mathern,et al.  Shared HLA Class I and II Alleles and Clonally Restricted Public and Private Brain-Infiltrating αβ T Cells in a Cohort of Rasmussen Encephalitis Surgery Patients , 2016, Frontiers in immunology.

[50]  Cathy Maugis,et al.  Transformation and model choice for RNA-seq co-expression analysis , 2016, bioRxiv.

[51]  C. Sautès-Fridman,et al.  Tertiary lymphoid structures, drivers of the anti‐tumor responses in human cancers , 2016, Immunological reviews.

[52]  G. Widman,et al.  CD8+ T-cell pathogenicity in Rasmussen encephalitis elucidated by large-scale T-cell receptor sequencing , 2016, Nature Communications.

[53]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[54]  Simon A. Jones,et al.  Ectopic lymphoid follicles: inducible centres for generating antigen‐specific immune responses within tissues , 2015, Immunology.

[55]  Enkelejda Miho,et al.  Bioinformatic and Statistical Analysis of Adaptive Immune Repertoires. , 2015, Trends in immunology.

[56]  Steven H. Kleinstein,et al.  Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data , 2015, Bioinform..

[57]  M. Shlomchik,et al.  B Cell–Specific MHC Class II Deletion Reveals Multiple Nonredundant Roles for B Cell Antigen Presentation in Murine Lupus , 2015, The Journal of Immunology.

[58]  Ash A. Alizadeh,et al.  Robust enumeration of cell subsets from tissue expression profiles , 2015, Nature Methods.

[59]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[60]  Elisa Binda,et al.  High expression levels of the B cell chemoattractant CXCL13 in rheumatoid synovium are a marker of severe disease. , 2014, Rheumatology.

[61]  R. Sobel,et al.  MHC class II–dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies , 2013, The Journal of experimental medicine.

[62]  R. Emerson,et al.  Using synthetic templates to design an unbiased multiplex PCR assay , 2013, Nature Communications.

[63]  Ning Ma,et al.  IgBLAST: an immunoglobulin variable domain sequence analysis tool , 2013, Nucleic Acids Res..

[64]  Edward Y. Chen,et al.  Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool , 2013, BMC Bioinformatics.

[65]  Ning Leng,et al.  EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments , 2013, Bioinform..

[66]  Steven J. M. Jones,et al.  The genetic landscape of high-risk neuroblastoma , 2013, Nature Genetics.

[67]  M. Shlomchik,et al.  Germinal center selection and the development of memory B and plasma cells , 2012, Immunological reviews.

[68]  R. Ransohoff,et al.  Key role of CXCL13/CXCR5 axis for cerebrospinal fluid B cell recruitment in pediatric OMS , 2012, Journal of Neuroimmunology.

[69]  Katelyn T. Byrne,et al.  New Perspectives on the Role of Vitiligo in Immune Responses to Melanoma , 2011, Oncotarget.

[70]  G. Sauter,et al.  MMSET is highly expressed and associated with aggressiveness in neuroblastoma. , 2011, Cancer research.

[71]  B. Nelson,et al.  CD20+ B Cells: The Other Tumor-Infiltrating Lymphocytes , 2010, The Journal of Immunology.

[72]  P. Geurts,et al.  Inferring Regulatory Networks from Expression Data Using Tree-Based Methods , 2010, PloS one.

[73]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[74]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[75]  Abigail Wacher,et al.  Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells. , 2009, Blood.

[76]  S. Parodi,et al.  Long-Term Follow-Up of Neuroblastoma-Associated Opsoclonus-Myoclonus-Ataxia Syndrome , 2009, Neuropediatrics.

[77]  P. Petrow,et al.  CXCR5- and CCR7-dependent lymphoid neogenesis in a murine model of chronic antigen-induced arthritis. , 2007, Arthritis and rheumatism.

[78]  M. Smyth,et al.  Immune surveillance of tumors. , 2007, The Journal of clinical investigation.

[79]  L. Sansing,et al.  A patient with encephalitis associated with NMDA receptor antibodies , 2007, Nature Clinical Practice Neurology.

[80]  M. Pranzatelli,et al.  Rituximab (anti-CD20) Adjunctive Therapy for Opsoclonus-Myoclonus Syndrome , 2006, Journal of pediatric hematology/oncology.

[81]  James M. Powers,et al.  CXC Chemokine Ligand 13 Plays a Role in Experimental Autoimmune Encephalomyelitis1 , 2006, The Journal of Immunology.

[82]  J. Honnorat,et al.  Recommended diagnostic criteria for paraneoplastic neurological syndromes , 2004, Journal of Neurology, Neurosurgery & Psychiatry.

[83]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[84]  R. Darnell,et al.  Paraneoplastic syndromes involving the nervous system. , 2003, The New England journal of medicine.

[85]  A. Donfrancesco,et al.  Neuroblastic tumors associated with opsoclonus-myoclonus syndrome: histological, immunohistochemical and molecular features of 15 Italian cases , 2003, Virchows Archiv.

[86]  D. Stram,et al.  Opsoclonus-myoclonus-ataxia syndrome in neuroblastoma: clinical outcome and antineuronal antibodies-a report from the Children's Cancer Group Study. , 2001, Medical and pediatric oncology.

[87]  D. Stram,et al.  Opsoclonus-myoclonus-ataxia syndrome in neuroblastoma: histopathologic features-a report from the Children's Cancer Group. , 2001, Medical and pediatric oncology.

[88]  K K Matthay,et al.  The International Neuroblastoma Pathology Classification (the Shimada system) , 1999, Cancer.

[89]  P. A. Peterson,et al.  A novel class II MHC molecule with unusual tissue distribution , 1991, Nature.

[90]  R. Weinberg,et al.  N-myc amplification causes down-modulation of MHC class I antigen expression in neuroblastoma , 1986, Cell.

[91]  J. Kirkwood,et al.  Vitiligo in patients with metastatic melanoma: a good prognostic sign. , 1983, Journal of the American Academy of Dermatology.

[92]  R. Baehner,et al.  Favorable prognosis for survival in children with coincident opso‐myoclonus and neuroblastoma , 1976, Cancer.

[93]  J. Stehlin,et al.  Spontaneous regression of primary malignant melanomas with regional metastases , 1965, Cancer.

[94]  M. Kinsbourne Myoclonic encephalopathy of infants , 1962, Journal of neurology, neurosurgery, and psychiatry.

[95]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[96]  R. Reynolds,et al.  Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. , 2007, Brain : a journal of neurology.

[97]  V. McGovern SPONTANEOUS REGRESSION OF MELANOMA , 1975, Pathology.