Kinetic analysis and microstructured reactors modeling for the Fischer–Tropsch synthesis over a Co–Re/Al2O3 catalyst

Abstract The Fischer–Tropsch synthesis (FTS) in microreactors or microstructured reactors presents appealing advantages. In this work, the kinetics of the low-temperature FTS over a powdered 20%Co–0.5%Re/γ-Al2O3 catalyst is investigated. A reduced-complexity model is formulated with the aim of achieving a tradeoff between accuracy and computational manageability for microreactor simulation purposes. The model satisfactorily described the catalyst performance under conditions at which the CO conversion is below 50% but failed when the diffusional limitations are significant. A steady-state, isothermal plug flow model incorporating the reduced-complexity FTS kinetics was developed to simulate the behavior of several microstructured reactors loaded with the Co–Re/γ-Al2O3 catalyst. The reactors consisted in monoliths, micromonoliths, foams and microchannel reactors. The model suitably described the reactors performance for CO conversions below 50% and if the catalyst layer is sufficiently thin as to reduce the influence of the transport limitations. Further work is necessary to widen the range of validity of the kinetic model in order to include operating conditions interesting for FTS intensification in microstructured reactors. An effort is also necessary from the point of view of reactor development to avoid that transport issues become a limiting factor of the FTS when using microreaction technology.

[1]  E. Steen,et al.  Fischer‐Tropsch Catalysts for the Biomass‐to‐Liquid (BTL)‐Process , 2008 .

[2]  Mario Montes,et al.  Fischer–Tropsch synthesis in microchannels , 2011 .

[3]  F. M. Meeuse,et al.  Is a monolithic loop reactor a viable option for Fischer-Tropsch synthesis? , 2003 .

[4]  Anders Holmen,et al.  Fischer-tropsch synthesis on monolithic catalysts of different materials , 2001 .

[5]  A. J. Markvoort,et al.  Kinetics of the Fischer-Tropsch reaction. , 2012, Angewandte Chemie.

[6]  Jianli Hu,et al.  Intensified Fischer–Tropsch synthesis process with microchannel catalytic reactors , 2009 .

[7]  David Balloy,et al.  Preparation of a multilayered composite catalyst for Fischer–Tropsch synthesis in a micro-chamber reactor , 2007 .

[8]  Raymond C. Everson,et al.  Fischer−Tropsch Kinetic Studies with Cobalt−Manganese Oxide Catalysts , 2000 .

[9]  P. M. Diéguez,et al.  Integration of methanol steam reforming and combustion in a microchannel reactor for H2 production: A CFD simulation study , 2009 .

[10]  Yong Wang,et al.  A compact and high throughput reactor of monolithic‐structured catalyst bed for conversion of syngas to liquid fuels , 2012 .

[11]  D. Glasser,et al.  The role of vapour–liquid equilibrium in Fischer–Tropsch product distribution , 2011 .

[12]  P. M. Diéguez,et al.  A CFD study on the effect of the characteristic dimension of catalytic wall microreactors , 2012 .

[13]  Jianli Hu,et al.  Fischer-Tropsch Synthesis on Ceramic Monolith-Structured Catalysts , 2009 .

[14]  S. Skogestad,et al.  Selection of Controlled Variables for a Natural Gas to Liquids Process , 2012 .

[15]  E. Steen,et al.  Mechanistic Issues in Fischer–Tropsch Catalysis , 2011 .

[16]  Enrique Iglesia,et al.  Selectivity Control and Catalyst Design in the Fischer-Tropsch Synthesis: Sites, Pellets, and Reactors , 1993 .

[17]  Bohdan W. Wojciechowski,et al.  Studies of the fischer-tropsch synthesis on a cobalt catalyst II. Kinetics of carbon monoxide conversion to methane and to higher hydrocarbons , 1989 .

[18]  Freek Kapteijn,et al.  Fischer–Tropsch synthesis using monolithic catalysts , 2005 .

[19]  Guillaume Boissonnet,et al.  Second generation BtL type biofuels – a production cost analysis , 2012 .

[20]  Freek Kapteijn,et al.  Trends in Fischer–Tropsch Reactor Technology—Opportunities for Structured Reactors , 2003 .

[21]  F. Kapteijn,et al.  Using monolithic catalysts for highly selective Fischer–Tropsch synthesis , 2003 .

[22]  I. Puskas,et al.  Comments about the causes of deviations from the Anderson–Schulz–Flory distribution of the Fischer–Tropsch reaction products , 2003 .

[23]  G. Jacobs,et al.  Fischer−Tropsch Synthesis: Kinetics and Effect of Water for a Co/SiO2 Catalyst , 2005 .

[24]  B. Davis,et al.  Assessment of internal diffusion limitation on Fischer–Tropsch product distribution , 2002 .

[25]  Bohdan W. Wojciechowski,et al.  The Kinetics of the Fischer-Tropsch Synthesis , 1988 .

[26]  P. M. Diéguez,et al.  Computational fluid dynamics study of heat transfer in a microchannel reactor for low-temperature Fischer–Tropsch synthesis , 2010 .

[27]  P. Pfeifer,et al.  Fischer–Tropsch synthesis in a microstructured reactor , 2009 .

[28]  Hongwei Xiang,et al.  Modeling of catalyst pellets for Fischer-Tropsch synthesis , 2001 .

[29]  Thomas Turek,et al.  Comparison of different reactor types for low temperature Fischer–Tropsch synthesis: A simulation study , 2009 .

[30]  R. Zennaro,et al.  Detailed Kinetics of the Fischer–Tropsch Synthesis on Cobalt Catalysts Based on H-Assisted CO Activation , 2011 .

[31]  P. M. Diéguez,et al.  Methane steam reforming in a microchannel reactor for GTL intensification: A computational fluid dynamics simulation study , 2009 .

[32]  D. Schumacher,et al.  Fine Details on the Selectivity and Kinetics of the Fischer−Tropsch Synthesis over Cobalt Catalysts by Combination of Quantitative Gas Chromatography and Modeling , 1996 .

[33]  J. Nijenhuis,et al.  Fischer–Tropsch reaction–diffusion in a cobalt catalyst particle: aspects of activity and selectivity for a variable chain growth probability , 2012 .

[34]  Amit Sharma,et al.  A simple and realistic fixed bed model for investigating Fischer–Tropsch catalyst activity at lab-scale and extrapolating to industrial conditions , 2011 .

[35]  B. Wojciechowski,et al.  Studies of the fischer‐tropsch synthesis on a colbalt catalyst. III. mechanistic formulation of the kinetics of selectivity for higher hydrocarbon formation , 1989 .

[36]  R. Zennaro,et al.  Kinetics of Fischer–Tropsch synthesis on titania-supported cobalt , 2000 .

[37]  C. Satterfield,et al.  Intrinsic kinetics of the Fischer-Tropsch synthesis on a cobalt catalyst , 1991 .

[38]  B. Sarup,et al.  Studies of the fischer‐tropsch synthesis on a cobalt catalyst i. evaluation of product distribution parameters from experimental data , 1988 .

[39]  Ahmet K. Avci,et al.  Parametric analysis of Fischer‐tropsch synthesis in a catalytic microchannel reactor , 2012 .

[40]  G. Froment,et al.  Chemical Reactor Analysis and Design , 1979 .

[41]  Mario Montes,et al.  Microchannel reactor for Fischer–Tropsch synthesis: Adaptation of a commercial unit for testing microchannel blocks , 2013 .

[42]  R. Zennaro,et al.  Development of a complete kinetic model for the Fischer-Tropsch synthesis over Co/Al2O3 catalysts , 2007 .

[43]  Enrique Iglesia,et al.  Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts , 1997 .

[44]  Cuong Pham-Huu,et al.  Effect of structure and thermal properties of a Fischer–Tropsch catalyst in a fixed bed , 2009 .

[45]  R. Zennaro,et al.  An experimental investigation of Fischer–Tropsch synthesis over washcoated metallic structured supports , 2009 .

[46]  Anthony G. Dixon,et al.  Packed Tubular Reactor Modeling and Catalyst Design using Computational Fluid Dynamics , 2006 .

[47]  Arno de Klerk,et al.  Fischer–Tropsch Facilities at a Glance , 2011 .

[48]  Chikezie Nwaoha,et al.  Gas-to-liquids (GTL): A review of an industry offering several routes for monetizing natural gas , 2012 .

[49]  Ejm Emiel Hensen,et al.  Structure sensitivity of the Fischer–Tropsch reaction; molecular kinetics simulations , 2011 .

[50]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[51]  M. Kassing,et al.  Preparation and Catalytic Evaluation of Cobalt-Based Monolithic and Powder Catalysts for Fischer−Tropsch Synthesis , 2008 .

[52]  G. Norval Notes on the issues of equilibrium in the Fischer–Tropsch synthesis† , 2008 .

[53]  Sigurd Skogestad,et al.  A Natural Gas to Liquids Process Model for Optimal Operation , 2012 .

[54]  G. V. D. Laan,et al.  Kinetics and Selectivity of the Fischer–Tropsch Synthesis: A Literature Review , 1999 .