Multiple use of soluble metallodendritic materials as catalysts and dyes.

Different sizes of core-functionalized metallodendritic wedges were prepared by anchoring sensor-active arylplatinum(II) sites at the focal point of Fréchet-type polyether dendritic wedges of various generations. The strong color of these metallodendrimers in the presence of SO2 was used to assess the permeability of nanofiltration membranes (molecular weight cut-off of 400 dalton) at ambient pressure. A primary result of these studies is that dendrimers do not have to be exceptionally large for successful retention. Hence, nanofiltration, membrane-capped. immersion vials were developed, which operate as sensor devices when loaded with metallodendrimers with good retention properties. Appropriate substitution of the dye site at the focal point of these metallodendritic wedges by a catalytically active group afforded dendritic catalysts that exhibit essentially the same physical properties (shape, retention) as the corresponding dyefunctionalized dendritic wedges. When this homogeneous catalyst is compartmentalized in membrane-capped vials, a unique and convenient method for its retrieval from product solutions is available. Moreover, such immobilized metallodendritic catalysts can be regenerated and stored for months without losing their activity; this provides access for the development of novel sustainable homogeneous catalysts.

[1]  G. Newkome,et al.  Suprasupermolecules with Novel Properties: Metallodendrimers. , 1999, Chemical reviews.

[2]  G. Lu,et al.  A NOVEL METHOD FOR TAILORING THE PORE-OPENING SIZE OF MCM-41 MATERIALS , 1999 .

[3]  J. Reek,et al.  Catalysis in the core of a carbosilane dendrimer , 1999 .

[4]  Jean M. J. Fréchet,et al.  Unique behavior of dendritic macromolecules: intrinsic viscosity of polyether dendrimers , 1992 .

[5]  A. Shanzer,et al.  Assemblies of “Hinged” Iron−Porphyrins as Potential Oxygen Sensors , 2000 .

[6]  J. R. Moss,et al.  Organometallic and related metal-containing dendrimers , 1999 .

[7]  Shin-ichi Nakao,et al.  Development of a Fast Response Molecular Recognition Ion Gating Membrane , 1999 .

[8]  C. Hawker,et al.  Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules , 1990 .

[9]  E. W. Meijer,et al.  About Dendrimers: Structure, Physical Properties, and Applications. , 1999, Chemical reviews.

[10]  Xumu Zhang,et al.  Synthesis and X-ray Crystal Structures of Palladium(II) and Platinum(II) Complexes of the PCP-Type Chiral Tridentate Ligand (1R,1‘R)-1,3-Bis[1-(diphenylphosphino)ethyl]benzene. Use in the Asymmetric Aldol Reaction of Methyl Isocyanoacetate and Aldehydes , 1998 .

[11]  C. Bolm,et al.  Hyperbranched Macromolecules in Asymmetric Catalysis , 1996 .

[12]  H. Fischer The Persistent Radical Effect In “Living” Radical Polymerization , 1997 .

[13]  F. Vögtle,et al.  Dendritic Molecules: Concepts, Syntheses, Perspectives , 1996 .

[14]  Brian D. MacCraith,et al.  Dye-doped organically modified silica glass for fluorescence based carbon dioxide gas detection , 1998 .

[15]  Steven C. Zimmerman,et al.  Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Assembly. , 1997, Chemical reviews.

[16]  G. Whitesides,et al.  Membrane-enclosed enzymic catalysis (MEEC): a useful, practical new method for the manipulation of enzymes in organic synthesis , 1987 .

[17]  U. Kragl,et al.  Selective Hydrovinylation of Styrene in a Membrane Reactor: Use of Carbosilane Dendrimers with Hemilabile P,O Ligands. , 1999, Angewandte Chemie.

[18]  H. Frey,et al.  Heteroatom‐Based Dendrimers , 1998 .

[19]  M. Muthukumar,et al.  Configurational characteristics and scaling behavior of starburst molecules: a computational study , 1990 .

[20]  Fritz Vögtle,et al.  Dendrimere: von Generationen zu Funktionalitäten und Funktionen , 1994 .

[21]  V. Balzani,et al.  Designing Dendrimers Based on Transition-Metal Complexes. Light-Harvesting Properties and Predetermined Redox Patterns , 1998 .

[22]  M. Gozin,et al.  Activation of a carbon–carbon bond in solution by transition-metal insertion , 1993, Nature.

[23]  Arjan W. Kleij,et al.  The "Dendritic Effect" in Homogeneous Catalysis with Carbosilane-Supported Arylnickel(II) Catalysts: Observation of Active-Site Proximity Effects in Atom-Transfer Radical Addition. , 2000, Angewandte Chemie.

[24]  M. T. Reetz,et al.  Synthese und katalytische Wirkung von dendritischen Diphosphan-Metallkomplexen , 1997 .

[25]  D. M. Grove,et al.  Mechanistic Aspects of the Kharasch Addition Reaction Catalyzed by Organonickel(II) Complexes Containing the Monoanionic Terdentate Aryldiamine Ligand System [C6H2(CH2NMe2)2-2,6-R-4]-† , 1997 .

[26]  Heinrich Zollinger Color: A Multidisciplinary Approach , 1999 .

[27]  H. Brunner Dendrizymes: Expanded ligands for enantioselective catalysis , 1995 .

[28]  F. Vögtle,et al.  Dendrimers: From Design to Application-A Progress Report. , 1999, Angewandte Chemie.

[29]  E. Constable Metallodendrimers: metal ions as supramolecular glue , 1997 .

[30]  A. Albinati,et al.  Synthesis of an Optically Active Platinum(II) Complex Containing a New Terdentate P-C-P Ligand and Its Catalytic Activity in the Asymmetric Aldol Reaction of Methyl Isocyanoacetate. X-ray Crystal Structure of [2,6-Bis[(1'S,2'S)-1'-(diphenylphosphino)-2',3'-O-isopropylidene-2',3'-dihydroxypropyl]phen , 1994 .

[31]  D. Diamond,et al.  Optical Sensor for Gaseous Ammonia With Tuneable Sensitivity , 1997 .

[32]  Gossage,et al.  Diagnostic organometallic and metallodendritic materials for SO2 gas detection: reversible binding of sulfur dioxide to arylplatinum(II) complexes , 2000, Chemistry.

[33]  Erwin Buncel,et al.  Solvatochromism and solvent polarity scales , 1990 .

[34]  Colette McDonagh,et al.  Dissolved oxygen sensor based on fluorescence quenching of oxygen-sensitive ruthenium complexes immobilized in sol–gel-derived porous silica coatings , 1996 .

[35]  G. Koten,et al.  Fluorous Versions of Wilkinson's Catalyst : Activity in Fluorous Hydrogenation of 1-Alkenes and Recycling by Fluorous Biphasic Separation , 2000 .

[36]  Johann T. B. H. Jastrzebski,et al.  SELEKTIVE HYDROVINYLIERUNG VON STYROL IM MEMBRANREAKTOR : ANWENDUNG VON CARBOSILANDENDRIMEREN MIT HEMILABILEN P, O-LIGANDEN , 1999 .

[37]  D. M. Grove,et al.  New homogeneous catalysts in the addition of polyhalogeno alkanes to olefins; organonickel(II) complexes [Ni{C6H3(CH2NMe2)2-o,o'}X] (X = CL, Br, I) , 1988 .

[38]  J. Fréchet,et al.  Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. , 1994, Science.

[39]  H. Chow,et al.  Dendritic Catalysts: Reactivity and Mechanism of the Dendritic Bis(oxazoline)metal Complex Catalyzed Diels−Alder Reaction† , 1997 .

[40]  Wolfgang A. Herrmann,et al.  Applied Homogeneous Catalysis with Organometallic Compounds , 1996 .

[41]  Arjan W. Kleij,et al.  Der „dendritische Effekt”︁ in der homogenen Katalyse mit Arylnickel(II)‐Katalysatoren auf Carbosilanträgern: Naheinflüsse des aktiven Zentrums bei Atomtransfer‐Radikaladditionen , 2000 .

[42]  G. Koten,et al.  Diaminoarylnickel(II) “Pincer” Complexes: Mechanistic Considerations in the Kharasch Addition Reaction, Controlled Polymerization, and Dendrimeric Transition Metal Catalysts , 1998 .

[43]  G. Koten Tuning the reactivity of metals held in a rigid ligand environment , 1989 .

[44]  K. Suslick,et al.  Dendrimer-metalloporphyrins: Synthesis and catalysis , 1996 .

[45]  NO‐Erkennung durch einen Metallkomplex als Folge der selektiven Dissoziation eines Liganden , 2000 .

[46]  Dani,et al.  Hydrogen-Transfer Catalysis with Pincer-Aryl Ruthenium(II) Complexes. , 2000, Angewandte Chemie.

[47]  U. Kragl,et al.  Kontinuierliche asymmetrische Synthese in einem Membranreaktor , 1996 .

[48]  D. M. Grove,et al.  Homogeneous catalysts based on silane dendrimers functionalized with arylnickel(II) complexes , 1994, Nature.

[49]  U. Kragl,et al.  Continuous Asymmetric Synthesis in a Membrane Reactor , 1996 .

[50]  B. Pugin,et al.  Dendrimers Containing Chiral Ferrocenyl Diphosphine Ligands for Asymmetric Catalysis , 1998 .

[51]  F. Vögtle,et al.  Dendrimere: vom Design zur Anwendung – ein Fortschrittsbericht , 1999 .

[52]  D. Bergbreiter,et al.  Tridentate SCS Palladium(II) Complexes: New, Highly Stable, Recyclable Catalysts for the Heck Reaction , 1999 .

[53]  C. Ahn,et al.  Controlling polymer shape through the self-assembly of dendritic side-groups , 1998, Nature.

[54]  Manfred T. Reetz,et al.  Allylic Substitution with Dendritic Palladium Catalysts in a Continuously Operating Membrane Reactor , 1999 .

[55]  D. Tomalia,et al.  Genealogically directed synthesis: Starburst/cascade dendrimers and hyperbranched structures , 1993 .

[56]  M. Reetz,et al.  Systhesis and Catalytic Activity of Dendritic Diphosphane Metal Complexes , 1997 .

[57]  D. M. Grove,et al.  Electronic Tuning of Arylnickel(II) Complexes by Para Substitution of the Terdentate Monoanionic 2,6-Bis[(dimethylamino)methyl]phenyl Ligand , 1994 .

[58]  D. Tomalia,et al.  Carboxylated starburst dendrimers as calibration standards for aqueous size exclusion chromatography. , 1992, Analytical chemistry.

[59]  C. Jensen,et al.  Catalytic Dehydrogenation of Cycloalkanes to Arenes by a Dihydrido Iridium P−C−P Pincer Complex , 1997 .

[60]  R. Crooks,et al.  Dendrimer-Encapsulated Pd Nanoparticles as Fluorous Phase-Soluble Catalysts , 2000 .

[61]  F. Vögtle,et al.  Dendrimers: From Generations and Functional Groups to Functions , 1995 .

[62]  G. Koten,et al.  Gas Sensor Materials Based on Metallodendrimers , 1999 .

[63]  C. Hawker,et al.  Solvatochromism as a Probe of the Microenvironment in Dendritic Polyethers: Transition from an Extended to a Globular Structure , 1993 .

[64]  Ursula E. Spichiger-Keller,et al.  Chemical Sensors and Biosensors for Medical and Biological Applications , 1998 .