Normal bases via general Gauss periods

Gauss periods have been used successfully as a tool for constructing normal bases in finite fields. Starting from a primitive $r$th root of unity, one obtains under certain conditions a normal basis for $mathbb F_q^n$ over $ F_q$, where $r$ is a prime and $nk=r-1$ for some integer $k$. We generalize this construction by allowing arbitrary integers $r$ with $nk=\varphi(r)$, and find in many cases smaller values of $k$ than is possible with the previously known approach

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  S. Lang Algebraic Number Theory , 1971 .

[3]  Ronald C. Mullin,et al.  Optimal normal bases in GF(pn) , 1989, Discret. Appl. Math..

[4]  Joachim von zur Gathen,et al.  Gauss periods: orders and cryptographical applications , 1998, Math. Comput..

[5]  Ian F. Blake,et al.  Low complexity normal bases , 1989, Discret. Appl. Math..

[6]  E. Noether,et al.  Normalbasis bei Körpern ohne höhere Verzweigung. , 1932 .

[7]  A. Menezes,et al.  Applications of Finite Fields , 1992 .

[8]  A. Wassermann,et al.  Zur Arithmetik in endlichen Körpern , 1993 .

[9]  Shuhong Gao,et al.  Optimal normal bases , 1992, Des. Codes Cryptogr..

[10]  Joachim von zur Gathen,et al.  Gauss Periods and Fast Exponentiation in Finite Fields (Extended Abstract) , 1995, LATIN.