A cancer rainbow mouse for visualizing the functional genomics of oncogenic clonal expansion

[1]  T. Pers,et al.  Tracing the origin of adult intestinal stem cells , 2019, Nature.

[2]  Scott N. Mueller,et al.  Intraclonal Plasticity in Mammary Tumors Revealed through Large-Scale Single-Cell Resolution 3D Imaging. , 2019, Cancer cell.

[3]  Wei-Ching Liang,et al.  The homophilic receptor PTPRK selectively dephosphorylates multiple junctional regulators to promote cell–cell adhesion , 2019, eLife.

[4]  Ajay S. Gulati,et al.  The enteric microbiota regulates jejunal Paneth cell number and function without impacting intestinal stem cells , 2018, Gut microbes.

[5]  S. Tavaré,et al.  Fixation and Spread of Somatic Mutations in Adult Human Colonic Epithelium , 2018, Cell stem cell.

[6]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[7]  K. Sigmundsson,et al.  PDGFRα+ pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo , 2018, Proceedings of the National Academy of Sciences.

[8]  M. Mclaughlin,et al.  Wnt ligands influence tumour initiation by controlling the number of intestinal stem cells , 2018, Nature Communications.

[9]  S. Itzkovitz,et al.  Spatial Reconstruction of Single Enterocytes Uncovers Broad Zonation along the Intestinal Villus Axis , 2018, Cell.

[10]  T. Graham,et al.  An evolutionary perspective on field cancerization , 2017, Nature Reviews Cancer.

[11]  Yarden Katz,et al.  A single-cell survey of the small intestinal epithelium , 2017, Nature.

[12]  Teng Han,et al.  R-Spondin chromosome rearrangements drive Wnt-dependent tumour initiation and maintenance in the intestine , 2017, Nature Communications.

[13]  Irving L. Weissman,et al.  Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem cell self-renewal , 2017, Nature.

[14]  M. Caron,et al.  Inhibiting clathrin-mediated endocytosis of the leucine-rich G protein-coupled receptor-5 diminishes cell fitness , 2017, The Journal of Biological Chemistry.

[15]  A. Sacchetti,et al.  RSPO3 expands intestinal stem cell and niche compartments and drives tumorigenesis , 2016, Gut.

[16]  Philippe Andrey,et al.  MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ , 2016, Bioinform..

[17]  J. Osborne,et al.  Paneth Cell-Rich Regions Separated by a Cluster of Lgr5+ Cells Initiate Crypt Fission in the Intestinal Stem Cell Niche , 2016, PLoS biology.

[18]  M. Caron,et al.  A rapid and affordable screening platform for membrane protein trafficking , 2015, BMC Biology.

[19]  M. Bruchez,et al.  Fluoromodule-based reporter/probes designed for in vivo fluorescence imaging. , 2015, The Journal of clinical investigation.

[20]  S. Henning,et al.  Tissue underlying the intestinal epithelium elicits proliferation of intestinal stem cells following cytotoxic damage , 2015, Cell and Tissue Research.

[21]  C. Curtis,et al.  A Big Bang model of human colorectal tumor growth , 2015, Nature Genetics.

[22]  Alexander G. Fletcher,et al.  Quantification of Crypt and Stem Cell Evolution in the Normal and Neoplastic Human Colon , 2014, Cell reports.

[23]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[24]  J. Rossant,et al.  Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts , 2014, Development.

[25]  H. Clevers,et al.  Biased competition between Lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion , 2013, EMBO reports.

[26]  Andrea Sottoriva,et al.  Defining Stem Cell Dynamics in Models of Intestinal Tumor Initiation , 2013, Science.

[27]  Jeff W. Lichtman,et al.  NEW TOOLS FOR THE BRAINBOW TOOLBOX , 2013, Nature Methods.

[28]  Melanie A. Huntley,et al.  Recurrent R-spondin fusions in colon cancer , 2012, Nature.

[29]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[30]  T. Graham,et al.  Field cancerization in the intestinal epithelium of patients with Crohn's ileocolitis. , 2012, Gastroenterology.

[31]  M. Helmrath,et al.  Expansion of Intestinal Epithelial Stem Cells during Murine Development , 2011, PloS one.

[32]  Hans Clevers,et al.  Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling , 2011, Nature.

[33]  H. Park,et al.  High Cleavage Efficiency of a 2A Peptide Derived from Porcine Teschovirus-1 in Human Cell Lines, Zebrafish and Mice , 2011, PloS one.

[34]  Hans Clevers,et al.  Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts , 2011, Nature.

[35]  Allon M Klein,et al.  Intestinal Stem Cell Replacement Follows a Pattern of Neutral Drift , 2010, Science.

[36]  Hans Clevers,et al.  Intestinal Crypt Homeostasis Results from Neutral Competition between Symmetrically Dividing Lgr5 Stem Cells , 2010, Cell.

[37]  H. Clevers,et al.  Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche , 2009, Nature.

[38]  C. Gottardi,et al.  Cadherins and cancer: how does cadherin dysfunction promote tumor progression? , 2008, Oncogene.

[39]  A. Day,et al.  Crypt Fission Peaks Early During Infancy and Crypt Hyperplasia Broadly Peaks During Infancy and Childhood in the Small Intestine of Humans , 2008, Journal of pediatric gastroenterology and nutrition.

[40]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[41]  C. S. Raymond,et al.  High-Efficiency FLP and ΦC31 Site-Specific Recombination in Mammalian Cells , 2007, PloS one.

[42]  Takeshi Oshima,et al.  Mitogenic Influence of Human R-Spondin1 on the Intestinal Epithelium , 2005, Science.

[43]  J. Uney,et al.  Woodchuck post‐transcriptional element induces nuclear export of myotonic dystrophy 3′ untranslated region transcripts , 2005, EMBO reports.

[44]  J. Hartley,et al.  Concerted assembly and cloning of multiple DNA segments using in vitro site-specific recombination: functional analysis of multi-segment expression clones. , 2004, Genome research.

[45]  J. Nathans,et al.  Vascular Development in the Retina and Inner Ear Control by Norrin and Frizzled-4, a High-Affinity Ligand-Receptor Pair , 2004, Cell.

[46]  H. Varmus,et al.  Requirement for a Nuclear Function of β-Catenin in Wnt Signaling , 2003, Molecular and Cellular Biology.

[47]  C. Tabin,et al.  Wnt signaling during development of the gastrointestinal tract. , 2003, Developmental biology.

[48]  C. R. Leemans,et al.  A genetic explanation of Slaughter's concept of field cancerization: evidence and clinical implications. , 2003, Cancer research.

[49]  Jeremy Nathans,et al.  A Noninvasive Genetic/Pharmacologic Strategy for Visualizing Cell Morphology and Clonal Relationships in the Mouse , 2003, The Journal of Neuroscience.

[50]  D. Gumucio,et al.  cis Elements of the Villin Gene Control Expression in Restricted Domains of the Vertical (Crypt) and Horizontal (Duodenum, Cecum) Axes of the Intestine* , 2002, The Journal of Biological Chemistry.

[51]  Philippe Soriano,et al.  Widespread recombinase expression using FLPeR (Flipper) mice , 2000, Genesis.

[52]  M. Taketo,et al.  Intestinal polyposis in mice with a dominant stable mutation of the β‐catenin gene , 1999, The EMBO journal.

[53]  T. Hope,et al.  Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element Enhances Expression of Transgenes Delivered by Retroviral Vectors , 1999, Journal of Virology.

[54]  R. Kemler,et al.  The C-terminal transactivation domain of β-catenin is necessary and sufficient for signaling by the LEF-1/β-catenin complex in Xenopus laevis , 1999, Mechanisms of Development.

[55]  Rudolf Grosschedl,et al.  Modulation of Transcriptional Regulation by LEF-1 in Response to Wnt-1 Signaling and Association with β-Catenin , 1998, Molecular and Cellular Biology.

[56]  W. Bodmer,et al.  APC in the regulation of intestinal crypt fission , 1998, The Journal of pathology.

[57]  Hans Clevers,et al.  Activation of β-Catenin-Tcf Signaling in Colon Cancer by Mutations in β-Catenin or APC , 1997, Science.

[58]  K. Kinzler,et al.  Constitutive Transcriptional Activation by a β-Catenin-Tcf Complex in APC−/− Colon Carcinoma , 1997, Science.

[59]  B. Gumbiner,et al.  Binding to cadherins antagonizes the signaling activity of beta-catenin during axis formation in Xenopus , 1996, The Journal of cell biology.

[60]  K. Kinzler,et al.  Association of the APC tumor suppressor protein with catenins. , 1993, Science.

[61]  H Cheng,et al.  Crypt production in normal and diseased human colonic epithelium , 1986, The Anatomical record.

[62]  D. Hubel,et al.  The period of susceptibility to the physiological effects of unilateral eye closure in kittens , 1970, The Journal of physiology.

[63]  Stephen Lynch,et al.  Image Processing with Python , 2018 .

[64]  H. Clevers,et al.  Occult progression by Apc-deficient intestinal crypts as a target for chemoprevention. , 2014, Carcinogenesis.

[65]  Hans Clevers,et al.  Primary mouse small intestinal epithelial cell cultures. , 2013, Methods in molecular biology.

[66]  H. Varmus,et al.  Requirement for a nuclear function of beta-catenin in Wnt signaling. , 2003, Molecular and cellular biology.

[67]  Philippe Soriano Generalized lacZ expression with the ROSA26 Cre reporter strain , 1999, Nature Genetics.

[68]  A. Harłozińska,et al.  Field effect of human colon carcinoma on normal mucosa: relevance of carcinoembryonic antigen expression. , 1996, Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine.