Magnetic‐Field‐Induced Phase‐Selective Synthesis of Ferrosulfide Microrods by a Hydrothermal Process: Microstructure Control and Magnetic Properties

Microrods of the ferrosulfide minerals greigite (Fe3S4) and marcasite (FeS2) are selectively synthesized by an in situ magnetic-field-assisted hydrothermal route. Each complex microrod is composed of fine building blocks with different shapes. The unique magnetic properties of the microrods and electrical performance of a single microrod are studied. The results demonstrate that the magnetic properties of the ferrosulfide minerals are strongly related to their corresponding microstructures. The value of the low-temperature transition increases as the greigite component in the product decreases. The combination of small-molecule sulfur precursors and an applied magnetic field makes possible the selective synthesis of ferrosulfide minerals with different phases and distinct microstructures, underlining the fact that the magnetic field can be a useful tool as well as an independent parameter for the phase-selective synthesis and self-assembly of inorganic building blocks in solution chemistry.

[1]  I. Snowball Magnetic hysteresis properties of greigite (Fe3S4) and a new occurrence in Holocene sediments from Swedish Lappland , 1991 .

[2]  V. Garg,et al.  Magnetic properties of iron marcasite FeS2 , 1991 .

[3]  Tang,et al.  Magnetic-field-induced isotropic-nematic phase transition in a colloidal suspension. , 1993, Physical review letters.

[4]  D. Niznansky,et al.  High Coercive Field for Nanoparticles of CoFe2O4 in Amorphous Silica Sol–Gel , 2003 .

[5]  M. Nath,et al.  Synthesis and Characterization of Magnetic Iron Sulfide Nanowires , 2003 .

[6]  Qianwang Chen,et al.  Magnetic field-induced growth and self-assembly of cobalt nanocrystallites , 2003 .

[7]  J. Jolivet,et al.  Magnetic-field-induced nematic-columnar phase transition in aqueous suspensions of goethite (alpha-FeOOH) nanorods. , 2004, Physical review letters.

[8]  A. Roberts Magnetic properties of sedimentary greigite (Fe3S4) , 1995 .

[9]  H. Boyen,et al.  Effective exchange interaction in a quasi-two-dimensional self-assembled nanoparticle array , 2004 .

[10]  Qianwang Chen,et al.  Magnetic‐Field‐Induced Growth of Single‐Crystalline Fe3O4 Nanowires , 2004 .

[11]  M. Antonietti,et al.  Promises and problems of mesoscale materials chemistry or why meso? , 2004, Chemistry.

[12]  A. Freke,et al.  The formation of magnetic iron sulphide by bacterial reduction of iron solutions , 1961 .

[13]  C. Gorter,et al.  On Spin‐Spin Relaxation Effects , 1968 .

[14]  M. Pileni,et al.  Nanocrystal Self-Assemblies: Fabrication and Collective Properties , 2001 .

[15]  O. Velev,et al.  Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[16]  J. Mattei,et al.  Grain‐size dependence of the magnetic behavior of pyrrhotite during its low‐temperature transition at 34 K , 1989 .

[17]  J. Coey,et al.  The Magnetic Properties and Mössbauer Spectra of Synthetic Samples of Fe3S4 , 1972 .

[18]  R. Ballou,et al.  Electrochemical Growth of Iron Arborescences under In-Plane Magnetic Field: Morphology Symmetry Breaking , 1999 .

[19]  D. Xing,et al.  Tunnel-type giant magnetoresistance in the granular perovskite La 0.85 Sr 0.15 MnO 3 , 1997 .

[20]  R. Tannenbaum,et al.  Polymer‐Mediated Alignment of Carbon Nanotubes under High Magnetic Fields , 2003 .

[21]  Jiangtao Hu,et al.  Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes , 1999 .

[22]  E. Braun,et al.  DNA-templated assembly and electrode attachment of a conducting silver wire , 1998, Nature.

[23]  S. Miyahara,et al.  Magnetic Properties of FeS2 and CoS2 , 1968 .

[24]  Y. Qian,et al.  Selective fabrication of metastable greigite (Fe3S4) nanocrystallites and its magnetic properties through a simple solution-based route , 2005 .

[25]  Shoogo Ueno,et al.  Micropatterning of cells using modulated magnetic fields. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[26]  Stanislaus S. Wong,et al.  Synthesis and Characterization of Carbon Nanotube−Nanocrystal Heterostructures , 2002 .

[27]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[28]  M. Pileni,et al.  Effect of the Structure of Cobalt Nanocrystal Organization on the Collective Magnetic Properties , 2003 .

[29]  M. Yamato,et al.  Particle trapping and undulation of a liquid surface using a microscopically modulated magnetic field. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[30]  Durand,et al.  Electric-field-induced isotropic-nematic phase transition. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  M. Pileni,et al.  Assemblies of Ferrite Nanocrystals: Partial Orientation of the Easy Magnetic Axes , 2001 .

[32]  X. Cao,et al.  Magnetic force driven orientation of Co23B10 arrays inspired by magnetotactic bacteria , 2003 .

[33]  M. Pileni,et al.  Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals , 2004, Nature materials.

[34]  Charles M. Lieber,et al.  One-dimensional nanostructures: Chemistry, physics & applications , 1998 .

[35]  Yong Ding,et al.  Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts , 2004, Science.

[36]  J. Coey,et al.  The magnetic structure of the spinel Fe3S4 , 1970 .

[37]  X. Commeinhes,et al.  Orientation of liquid‐crystalline suspensions of vanadium pentoxide ribbons by a magnetic field , 1997 .

[38]  Wen-lou Wang,et al.  The preparation and phase transition of nanocrystalline iron sulfides via toluene-thermal process , 1999 .

[39]  Jürgen Hafner,et al.  Magnetism and magneto-structural effects in transition-metal sulphides , 1999 .

[40]  R. Frankel,et al.  Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium , 1990, Nature.

[41]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[42]  E. Shevchenko,et al.  Magnetic‐Field‐Directed Growth of CoPt3 Nanocrystal Microwires , 2005 .