Ion heating and density production in helicon sources near the lower hybrid frequency

We report measurements of electron density and perpendicular ion temperatures in an argon helicon plasma for five different rf antennas: a?Nagoya type III antenna, a `Boswell' saddle coil antenna, a 19?cm long m = + 1 helical antenna, a 30?cm long m = + 1 helical antenna, and a 19?cm long m = + 1 helical antenna with narrow straps. The general properties of the source as a function of rf power and neutral pressure are reviewed and detailed measurements of electron density, electron temperature and ion temperature as a function of magnetic field strength and rf frequency are presented. The experimental results clearly indicate that for all antennas, the electron density is maximized when the rf frequency is close to and just above the lower hybrid frequency. The ion temperature is maximized when the rf frequency is less than 70% of the lower hybrid frequency. Ion temperatures in excess of 1?eV for 750?W of input power have been observed. These results suggest that the mechanisms responsible for coupling energy into the ions and electrons are distinct and therefore helicon sources can be configured to maximize electron density without simultaneously maximizing the perpendicular ion temperature. Enhanced ion heating is not a desirable feature of plasma sources intended for use in plasma etching, thus operational regimes that yield high plasma densities without increased ion heating might be of interest to industry.

[1]  John L. Kline,et al.  Microwave interferometer for steady-state plasmas , 2001 .

[2]  J. Kline,et al.  Beta-dependent upper bound on ion temperature anisotropy in a laboratory plasma , 2000 .

[3]  Suwon Cho The role of the lower hybrid resonance in helicon plasmas , 2000 .

[4]  J. Kline,et al.  Ion heating in the HELIX helicon plasma source , 1999 .

[5]  T P Schneider,et al.  Langmuir probe studies of a helicon plasma system , 1999 .

[6]  J. Scharer,et al.  Helicon experiments and simulations in nonuniform magnetic field configurations , 1999 .

[7]  D. Blackwell,et al.  Upper Limit to Landau Damping in Helicon Discharges , 1999 .

[8]  A. Akhiezer,et al.  Ion-sound parametric turbulence and anomalous electron heating with application to helicon plasma sources , 1998 .

[9]  R. Boswell,et al.  Power coupling to helicon and Trivelpiece–Gould modes in helicon sources , 1998 .

[10]  J. Kline,et al.  Control of ion temperature anisotropy in a helicon plasma , 1998 .

[11]  Donald Arnush,et al.  Generalized theory of helicon waves. II. Excitation and absorption , 1998 .

[12]  E. Scime,et al.  Frequency dependent effects in helicon plasmas , 1997 .

[13]  R. Boswell,et al.  Modeling ionization by helicon waves , 1997 .

[14]  J. Kwak,et al.  Frequency dependence of the plasma density for helicon plasmas , 1997 .

[15]  Hong-young Chang,et al.  Frequency dependence of helicon wave plasmas near lower hybrid resonance frequency , 1997 .

[16]  J. D. Evans,et al.  Low-field helicon discharges , 1997 .

[17]  G. Borg,et al.  An evaluation of different antenna designs for helicon wave excitation in a cylindrical plasma source , 1996 .

[18]  Jung-hyung Kim,et al.  m=/spl plusmn/1 and m=/spl plusmn/2 mode helicon wave excitation , 1996 .

[19]  Hong-young Chang,et al.  A study on ion energy distribution functions and plasma potentials in helicon wave plasmas , 1996 .

[20]  S. Samukawa,et al.  Ion and Neutral Temperatures in a Novel Ultrahigh-Frequency Discharge Plasma , 1996 .

[21]  D. Arnush,et al.  Axial propagation of helicon waves , 1995 .

[22]  K. P. Shamrai,et al.  Resonances and anti-resonances of a plasma column in a helicon plasma source☆ , 1995 .

[23]  M. Light,et al.  Helicon wave excitation with helical antennas , 1995 .

[24]  Francis F. Chen,et al.  RF compensated probes for high-density discharges , 1994 .

[25]  T. C. Lee,et al.  Ion velocity distributions in helicon wave plasmas: Magnetic field and pressure effects , 1993 .

[26]  G. Chevalier,et al.  Experimental modeling of inductive discharges , 1993 .

[27]  H. Sakaue,et al.  Al Etching Characteristics Employing Helicon Wave Plasma , 1993 .

[28]  V. Godyak,et al.  Probe diagnostics of non‐Maxwellian plasmas , 1993 .

[29]  Tatsuo Shoji,et al.  Plasma production by helicon waves , 1993 .

[30]  Boswell,et al.  Ar II laser generated by Landau damping of whistler waves at the lower hybrid frequency. , 1989, Physical review letters.

[31]  R. Boswell,et al.  Large volume, high density rf inductively coupled plasma , 1987 .

[32]  R. Boswell Very efficient plasma generation by whistler waves near the lower hybrid frequency , 1984 .

[33]  Tsuguhiro Watanabe,et al.  Radio‐frequency plugging of a high density plasma , 1978 .

[34]  M. Porkolab,et al.  Observation of parametric instabilities in lower hybrid radio frequency heating of tokamaks , 1977 .

[35]  R. Stern,et al.  Plasma Ion Diagnostics Using Resonant Fluorescence , 1975 .

[36]  R. Boswell,et al.  Plasma production using a standing helicon wave , 1970 .