Store-operated cyclic AMP signalling mediated by STIM1

[1]  Colin W. Taylor,et al.  Selective coupling of type 6 adenylyl cyclase with type 2 IP3 receptors mediates direct sensitization of IP3 receptors by cAMP , 2008, The Journal of cell biology.

[2]  C. Romanin,et al.  Cytosolic Ca2+ prevents the subplasmalemmal clustering of STIM1: an intrinsic mechanism to avoid Ca2+ overload , 2008, Journal of Cell Science.

[3]  R. Penner,et al.  2‐Aminoethoxydiphenyl borate directly facilitates and indirectly inhibits STIM1‐dependent gating of CRAC channels , 2008, The Journal of physiology.

[4]  Xibao Liu,et al.  Functional Requirement for Orai1 in Store-operated TRPC1-STIM1 Channels* , 2008, Journal of Biological Chemistry.

[5]  J. Putney,et al.  Ca2+-store-dependent and -independent reversal of Stim1 localization and function , 2008, Journal of Cell Science.

[6]  T. Hébert,et al.  Heterodimers of adenylyl cyclases 2 and 5 show enhanced functional responses in the presence of Galpha s. , 2008, Cellular signalling.

[7]  D. Armstrong,et al.  Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels , 2008, Proceedings of the National Academy of Sciences.

[8]  L. Hunyady,et al.  Visualization and Manipulation of Plasma Membrane-Endoplasmic Reticulum Contact Sites Indicates the Presence of Additional Molecular Components within the STIM1-Orai1 Complex*♦ , 2007, Journal of Biological Chemistry.

[9]  M. Dziadek,et al.  Biochemical properties and cellular localisation of STIM proteins. , 2007, Cell calcium.

[10]  D. Cooper,et al.  Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. , 2007, Physiological reviews.

[11]  J. Putney New molecular players in capacitative Ca2+ entry , 2007, Journal of Cell Science.

[12]  Y. Gwack,et al.  Biochemical and Functional Characterization of Orai Proteins* , 2007, Journal of Biological Chemistry.

[13]  Joseph P. Yuan,et al.  STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels , 2007, Nature Cell Biology.

[14]  Tobias Meyer,et al.  Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion , 2007, Proceedings of the National Academy of Sciences.

[15]  Y. Gwack,et al.  Dynamic Assembly of TRPC1-STIM1-Orai1 Ternary Complex Is Involved in Store-operated Calcium Influx , 2007, Journal of Biological Chemistry.

[16]  Hiderou Yoshida,et al.  ER stress and diseases , 2007, The FEBS journal.

[17]  Tao Xu,et al.  Aggregation of STIM1 underneath the plasma membrane induces clustering of Orai1. , 2006, Biochemical and biophysical research communications.

[18]  C. Steegborn,et al.  Molecular details of cAMP generation in mammalian cells: a tale of two systems. , 2006, Journal of molecular biology.

[19]  Jin Zhang,et al.  Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters. , 2006, Biochemical and biophysical research communications.

[20]  Y. Gwack,et al.  Orai1 is an essential pore subunit of the CRAC channel , 2006, Nature.

[21]  Shenyuan L. Zhang,et al.  Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai , 2006, Nature.

[22]  JoAnn Buchanan,et al.  Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane , 2006, The Journal of cell biology.

[23]  Joseph P. Yuan,et al.  STIM1 carboxyl-terminus activates native SOC, Icrac and TRPC1 channels , 2006, Nature Cell Biology.

[24]  J. Kinet,et al.  CRACM1 Is a Plasma Membrane Protein Essential for Store-Operated Ca2+ Entry , 2006, Science.

[25]  Warren C. Ruder,et al.  Termination of cAMP signals by Ca2+ and G(alpha)i via extracellular Ca2+ sensors: a link to intracellular Ca2+ oscillations. , 2005, The Journal of cell biology.

[26]  T. Deerinck,et al.  STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane , 2005, Nature.

[27]  D. Burdakov,et al.  Intraluminal calcium as a primary regulator of endoplasmic reticulum function. , 2005, Cell calcium.

[28]  W. Paschen,et al.  Endoplasmic reticulum stress response and neurodegeneration. , 2005, Cell calcium.

[29]  Tobias Meyer,et al.  STIM Is a Ca2+ Sensor Essential for Ca2+-Store-Depletion-Triggered Ca2+ Influx , 2005, Current Biology.

[30]  D. Cooper,et al.  Ca2+-calmodulin-dependent phosphodiesterase (PDE1): current perspectives. , 2005, Cellular signalling.

[31]  S. Wagner,et al.  STIM1, an essential and conserved component of store-operated Ca2+ channel function , 2005, The Journal of cell biology.

[32]  J. Putney,et al.  Store-operated calcium channels. , 2005, Physiological reviews.

[33]  W. Ruder,et al.  Deoxycholic acid activates protein kinase C and phospholipase C via increased Ca2+ entry at plasma membrane. , 2005, Gastroenterology.

[34]  Kees Jalink,et al.  Detecting cAMP‐induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator , 2004, EMBO reports.

[35]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[36]  S. Curci,et al.  A Reassessment of the Effects of Luminal [Ca2+] on Inositol 1,4,5-Trisphosphate-induced Ca2+ Release from Internal Stores* , 2003, Journal of Biological Chemistry.

[37]  Prahlad T. Ram,et al.  G Protein Pathways , 2002, Science.

[38]  Philip Smith,et al.  Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. , 2001, The Biochemical journal.

[39]  Marc Montminy,et al.  Transcriptional regulation by the phosphorylation-dependent factor CREB , 2001, Nature Reviews Molecular Cell Biology.

[40]  N. Chaffey Red fluorescent protein , 2001 .

[41]  J. Hoek,et al.  Cellular activation by Ca2+ release from stores in the endoplasmic reticulum but not by increased free Ca2+ in the cytosol. , 1999, The Biochemical journal.

[42]  S. Hill,et al.  G protein-coupled-receptor cross-talk: the fine-tuning of multiple receptor-signalling pathways. , 1998, Trends in pharmacological sciences.

[43]  T. Pozzan,et al.  Capacitative Ca2+ Entry Is Closely Linked to the Filling State of Internal Ca2+ Stores: A Study Using Simultaneous Measurements of ICRAC and Intraluminal [Ca2+] , 1998, The Journal of cell biology.

[44]  T. Urushidani,et al.  Signal Transduction and Activation of Acid Secretion in the Parietal Cell , 1997, The Journal of Membrane Biology.

[45]  G. Milligan,et al.  Tailoring cAMP-signalling responses through isoform multiplicity. , 1997, Trends in biochemical sciences.

[46]  M. Moyer,et al.  NCM460, a normal human colon mucosal epithelial cell line , 1996, In Vitro Cellular & Developmental Biology - Animal.

[47]  M. Ikawa,et al.  A rapid and non‐invasive selection of transgenic embryos before implantation using green fluorescent protein (GFP) , 1995, FEBS letters.

[48]  P. Sargeant,et al.  Calcium store depletion in dimethyl BAPTA‐loaded human platelets increases protein tyrosine phosphorylation in the absence of a rise in cytosolic calcium , 1994, Experimental physiology.

[49]  T. Machen,et al.  Technique for in situ measurement of calcium in intracellular inositol 1,4,5-trisphosphate-sensitive stores using the fluorescent indicator mag-fura-2. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[50]  R. Tsien,et al.  Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane-permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca2+. , 1985, The Journal of biological chemistry.

[51]  Tullio Pozzan,et al.  Microdomains of intracellular Ca2+: molecular determinants and functional consequences. , 2006, Physiological reviews.

[52]  J. Williamson,et al.  Activation of ERK by Ca2+store depletion in rat liver epithelial cells. , 1999, American journal of physiology. Cell physiology.

[53]  T. Pozzan,et al.  Capacitative Ca 2 1 Entry Is Closely Linked to the Filling State of Internal Ca 2 1 Stores : A Study Using Simultaneous Measurements of I CRAC and Intraluminal [ Ca 2 1 ] , 1998 .

[54]  P. Sassone-Corsi,et al.  Transcription factors responsive to cAMP. , 1995, Annual review of cell and developmental biology.