Current limitations of solid-state NMR in carbohydrate and cell wall research.

[1]  S. Cho,et al.  Structure of In Vitro-Synthesized Cellulose Fibrils Viewed by Cryo-Electron Tomography and 13C Natural-Abundance Dynamic Nuclear Polarization Solid-State NMR , 2022, Biomacromolecules.

[2]  Mohamed H. Habib,et al.  Solid State NMR a Powerful Technique for Investigating Sustainable/Renewable Cellulose-Based Materials , 2022, Polymers.

[3]  Hui Yang,et al.  Carbohydrate-aromatic interface and molecular architecture of lignocellulose , 2022, Nature communications.

[4]  I. Hung,et al.  Solid-state 17O NMR study of α-d-glucose: exploring new frontiers in isotopic labeling, sensitivity enhancement, and NMR crystallography , 2022, Chemical science.

[5]  I. Hung,et al.  A 13C three-dimensional DQ-SQ-SQ correlation experiment for high-resolution analysis of complex carbohydrates using solid-state NMR. , 2022, Journal of magnetic resonance.

[6]  P. Azadi,et al.  Identification and Quantification of Glycans in Whole Cells: Architecture of Microalgal Polysaccharides Described by Solid-State Nuclear Magnetic Resonance , 2021, Journal of the American Chemical Society.

[7]  J. Latgé,et al.  A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR , 2021, Nature Communications.

[8]  M. Ceriotti,et al.  Bayesian probabilistic assignment of chemical shifts in organic solids , 2021, Science advances.

[9]  Caroline S. Pereira,et al.  Importance of Water in Maintaining Softwood Secondary Cell Wall Nanostructure , 2021, Biomacromolecules.

[10]  C. T. Anderson,et al.  A pectin methyltransferase modulates polysaccharide dynamics and interactions in Arabidopsis primary cell walls: Evidence from solid-state NMR. , 2021, Carbohydrate polymers.

[11]  R. Brüschweiler,et al.  DEEP picker is a deep neural network for accurate deconvolution of complex two-dimensional NMR spectra , 2021, Nature Communications.

[12]  S. Sigurdsson,et al.  The distance between g-tensors of nitroxide biradicals governs MAS-DNP performance: The case of the bTurea family. , 2021, Journal of magnetic resonance.

[13]  T. Heinze,et al.  Advanced characterization of regioselectively substituted methylcellulose model compounds by DNP enhanced solid-state NMR spectroscopy. , 2021, Carbohydrate polymers.

[14]  Sulin Zhang,et al.  Molecular insights into the complex mechanics of plant epidermal cell walls , 2021, Science.

[15]  Yihua Zhou,et al.  Solid-state NMR of unlabeled plant cell walls: high-resolution structural analysis without isotopic enrichment , 2021, Biotechnology for Biofuels.

[16]  A. Lipton,et al.  A grass-specific cellulose–xylan interaction dominates in sorghum secondary cell walls , 2020, Nature Communications.

[17]  M. Baldus,et al.  Postmodification via Thiol-click Chemistry Yields Hydrophilic Trityl-nitroxide Biradicals for Biomolecular High-Field Dynamic Nuclear Polarization. , 2020, The journal of physical chemistry. B.

[18]  R. Stark,et al.  Tailoring NMR experiments for structural characterization of amorphous biological solids: A practical guide. , 2020, Solid state nuclear magnetic resonance.

[19]  J. Mortimer,et al.  Unlocking the architecture of native plant cell walls via solid-state nuclear magnetic resonance. , 2020, Methods in cell biology.

[20]  Arnab Chakraborty,et al.  Biomolecular complex viewed by dynamic nuclear polarization solid-state NMR spectroscopy. , 2020, Biochemical Society transactions.

[21]  Tuo Wang,et al.  Solid-state NMR of plant and fungal cell walls: A critical review. , 2020, Solid state nuclear magnetic resonance.

[22]  Tuo Wang,et al.  CCMRD: a solid-state NMR database for complex carbohydrates , 2020, Journal of Biomolecular NMR.

[23]  D. Gajan,et al.  TinyPols: a family of water-soluble binitroxides tailored for dynamic nuclear polarization enhanced NMR spectroscopy at 18.8 and 21.1 T† , 2020, Chemical science.

[24]  Hui Yang,et al.  A density functional theory study on the shape of the primary cellulose microfibril in plants: effects of C6 exocyclic group conformation and H-bonding , 2020, Cellulose.

[25]  M. Bardet,et al.  Topology of Pretreated Wood Fibers Using Dynamic Nuclear Polarization , 2019, The Journal of Physical Chemistry C.

[26]  J. Latgé,et al.  Aspergillus fumigatus and Aspergillosis in 2019 , 2019, Clinical Microbiology Reviews.

[27]  Oliver M. Terrett,et al.  Molecular architecture of softwood revealed by solid-state NMR , 2019, Nature Communications.

[28]  M. Hong,et al.  Fast MAS 1H–13C correlation NMR for structural investigations of plant cell walls , 2019, Journal of Biomolecular NMR.

[29]  Göran Widmalm,et al.  Advancing Solutions to the Carbohydrate Sequencing Challenge. , 2019, Journal of the American Chemical Society.

[30]  C. Bougault,et al.  Studying intact bacterial peptidoglycan by proton-detected NMR spectroscopy at 100 kHz MAS frequency. , 2019, Journal of structural biology.

[31]  D. Cosgrove,et al.  Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR , 2019, Nature Communications.

[32]  Loukas Petridis,et al.  Quantum Calculations on Plant Cell Wall Component Interactions , 2019, Interdisciplinary Sciences: Computational Life Sciences.

[33]  A. French,et al.  Atomic resolution of cotton cellulose structure enabled by dynamic nuclear polarization solid-state NMR , 2018, Cellulose.

[34]  M. Pruski,et al.  Large-scale ab initio simulations of MAS DNP enhancements using a Monte Carlo optimization strategy. , 2018, The Journal of chemical physics.

[35]  Jeremy C. Smith,et al.  Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy , 2018, Nature Reviews Chemistry.

[36]  G. Jeschke,et al.  BDPA-Nitroxide Biradicals Tailored for Efficient Dynamic Nuclear Polarization Enhanced Solid-State NMR at Magnetic Fields up to 21.1 T. , 2018, Journal of the American Chemical Society.

[37]  S. Sigurdsson,et al.  Computationally Assisted Design of Polarizing Agents for Dynamic Nuclear Polarization Enhanced NMR: The AsymPol Family , 2018, Journal of the American Chemical Society.

[38]  P. Azadi,et al.  Molecular architecture of fungal cell walls revealed by solid-state NMR , 2018, Nature Communications.

[39]  M. Hong,et al.  Direct Determination of Hydroxymethyl Conformations of Plant Cell Wall Cellulose Using 1H Polarization Transfer Solid-State NMR. , 2018, Biomacromolecules.

[40]  A. Arnold,et al.  Whole cell solid-state NMR study of Chlamydomonas reinhardtii microalgae , 2018, Journal of Biomolecular NMR.

[41]  J. Latgé,et al.  The Fungal Cell Wall: Structure, Biosynthesis, and Function , 2017, Microbiology spectrum.

[42]  S. Vega,et al.  Fast and accurate MAS-DNP simulations of large spin ensembles. , 2017, Physical chemistry chemical physics : PCCP.

[43]  N. Mosier,et al.  Atomic-Level Structure Characterization of Biomass Pre- and Post-Lignin Treatment by Dynamic Nuclear Polarization-Enhanced Solid-State NMR. , 2017, The journal of physical chemistry. A.

[44]  Subhradip Paul,et al.  Welcoming natural isotopic abundance in solid-state NMR: probing π-stacking and supramolecular structure of organic nanoassemblies using DNP† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc02709a Click here for additional data file. , 2016, Chemical science.

[45]  Daniel P. Oehme,et al.  Structural factors affecting 13C NMR chemical shifts of cellulose: a computational study , 2017, Cellulose.

[46]  Thomas J. Simmons,et al.  Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR , 2016, Nature Communications.

[47]  D. Cosgrove,et al.  The Target of β-Expansin EXPB1 in Maize Cell Walls from Binding and Solid-State NMR Studies1[OPEN] , 2016, Plant Physiology.

[48]  Hui Yang,et al.  Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations. , 2016, Biomacromolecules.

[49]  C. Copéret,et al.  Dynamic nuclear polarization at 40 kHz magic angle spinning† †Electronic supplementary information (ESI) available: Experimental details, with supplementary tables and figures. See DOI: 10.1039/c6cp00839a Click here for additional data file. , 2016, Physical chemistry chemical physics : PCCP.

[50]  M. Hong,et al.  Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. , 2016, Journal of experimental botany.

[51]  Jonathan K. Williams,et al.  Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly (13)C-labeled proteins. , 2015, Solid state nuclear magnetic resonance.

[52]  Yong Bum Park,et al.  Cellulose-Pectin Spatial Contacts Are Inherent to Never-Dried Arabidopsis Primary Cell Walls: Evidence from Solid-State Nuclear Magnetic Resonance1[OPEN] , 2015, Plant Physiology.

[53]  Rafael C. Bernardi,et al.  Molecular dynamics simulations of large macromolecular complexes. , 2015, Current opinion in structural biology.

[54]  Thomas J. Simmons,et al.  Probing the molecular architecture of Arabidopsis thaliana secondary cell walls using two- and three-dimensional (13)C solid state nuclear magnetic resonance spectroscopy. , 2015, Biochemistry.

[55]  Y. Park,et al.  Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR. , 2014, Journal of the American Chemical Society.

[56]  Marcus B. Foston Advances in solid-state NMR of cellulose. , 2014, Current opinion in biotechnology.

[57]  O. Zabotina,et al.  Structure and dynamics of Brachypodium primary cell wall polysaccharides from two-dimensional (13)C solid-state nuclear magnetic resonance spectroscopy. , 2014, Biochemistry.

[58]  L. Cegelski,et al.  Solid-state NMR for bacterial biofilms , 2014, Molecular physics.

[59]  M. Rosay,et al.  Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. , 2013, Angewandte Chemie.

[60]  Yong Bum Park,et al.  Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls , 2013, Proceedings of the National Academy of Sciences.

[61]  G. De Paëpe,et al.  Matrix-free dynamic nuclear polarization enables solid-state NMR 13C-13C correlation spectroscopy of proteins at natural isotopic abundance. , 2013, Chemical communications.

[62]  T. Polenova,et al.  Broadband homonuclear correlation spectroscopy driven by combined R2(n)(v) sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids. , 2013, Journal of magnetic resonance.

[63]  I. Ayala,et al.  Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization. , 2013, Journal of the American Chemical Society.

[64]  O. Zabotina,et al.  Pectin-cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance. , 2012, Biochemistry.

[65]  M. Bardet,et al.  Rapid natural-abundance 2D 13C-13C correlation spectroscopy using dynamic nuclear polarization enhanced solid-state NMR and matrix-free sample preparation. , 2012, Angewandte Chemie.

[66]  S. Mansfield,et al.  Whole plant cell wall characterization using solution-state 2D NMR , 2012, Nature Protocols.

[67]  O. Zabotina,et al.  Multidimensional solid‐state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly 13C‐labeled Arabidopsis primary cell walls , 2012, Magnetic resonance in chemistry : MRC.

[68]  O. Zabotina,et al.  Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. , 2011, Biochemistry.

[69]  S. Wimperis,et al.  Solid-state NMR spectroscopy. , 2009, Physical chemistry chemical physics : PCCP.

[70]  S. Becker,et al.  Structural rearrangements of membrane proteins probed by water-edited solid-state NMR spectroscopy. , 2009, Journal of the American Chemical Society.

[71]  R. Griffin,et al.  Proton assisted recoupling and protein structure determination. , 2008, The Journal of chemical physics.

[72]  Michael Nilges,et al.  Structural Biology by NMR: Structure, Dynamics, and Interactions , 2008, PLoS Comput. Biol..

[73]  M. Baldus,et al.  Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids. , 2002, Journal of the American Chemical Society.

[74]  J. Duus,et al.  Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. , 2000, Chemical reviews.

[75]  M. J. Effland,et al.  An Analysis of the Wood Sugar Assay Using HPLC: A Comparison with Paper Chromatography , 1984 .

[76]  R. Atalla,et al.  Native Cellulose: A Composite of Two Distinct Crystalline Forms , 1984, Science.