A review of origami applications in mechanical engineering

This is an overview of current research in origami applied to mechanical engineering. Fundamental concepts and definitions commonly used in origami are introduced, including a background on key mathematical origami findings. An outline of applications in mechanical engineering is presented. The foundation of an origami-based design procedure and software that is currently available to aid in design are also described. The goal of this review is to introduce the subject to mechanical engineers who may not be familiar with it, and encourage future origami-based design and applications.

[1]  Larry L. Howell,et al.  Identifying links between origami and compliant mechanisms , 2011 .

[2]  Hyuk‐Jun Kwon,et al.  Low‐Power Flexible Organic Light‐Emitting Diode Display Device , 2011, Advanced materials.

[3]  Candace K. Chan,et al.  Origami lithium-ion batteries , 2014, Nature Communications.

[4]  Spencer P. Magleby,et al.  Accommodating Thickness in Origami-Based Deployable Arrays , 2013 .

[5]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[6]  S D Guest,et al.  Deployable membranes designed from folding tree leaves , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  Thomas C. Hull The Combinatorics of Flat Folds: a Survey , 2013 .

[8]  Y. W. Yi,et al.  Magnetic actuation of hinged microstructures , 1999 .

[9]  Steven W. Cranford,et al.  Meso-origami: Folding multilayer graphene sheets , 2009 .

[10]  M. Dickey,et al.  Self-folding of polymer sheets using local light absorption , 2012 .

[11]  Julian F. V. Vincent,et al.  The geometry of unfolding tree leaves , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[12]  Robert J. Wood,et al.  Towards printable robotics: Origami-inspired planar fabrication of three-dimensional mechanisms , 2011, 2011 IEEE International Conference on Robotics and Automation.

[13]  Heung Cho Ko,et al.  A hemispherical electronic eye camera based on compressible silicon optoelectronics , 2008, Nature.

[14]  Ron Pelrine,et al.  High-Strain Actuator Materials Based on Dielectric Elastomers , 2000 .

[15]  Tomohiro Tachi Geometric Considerations for the Design of Rigid Origami Structures , 2010 .

[16]  Russell W. Mailen,et al.  Simple geometric model to describe self-folding of polymer sheets. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Larry L. Howell,et al.  From Crease Pattern to Product: Considerations to Engineering Origami-Adapted Designs , 2014 .

[18]  Jian Feng,et al.  FOLDING OF A TYPE OF DEPLOYABLE ORIGAMI STRUCTURES , 2012 .

[19]  Jian S. Dai,et al.  Dexterous Manipulation of Origami Cartons With Robotic Fingers Based on the Interactive Configuration Space , 2008 .

[20]  Manos M. Tentzeris,et al.  A novel tunable origami accordion antenna , 2014, 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[21]  Larry L. Howell,et al.  A Classification of Action Origami as Systems of Spherical Mechanisms , 2013 .

[22]  Hans Ulrich Buri Origami - Folded Plate Structures , 2010 .

[23]  Thomas C. Hull,et al.  A Mathematical Model for Non-Flat Origami , 2002 .

[24]  Stephen Daynes,et al.  Morphing structures using soft polymers for active deployment , 2013 .

[25]  Hellmuth Stachel,et al.  A kinematic approach to Kokotsakis meshes , 2010, Comput. Aided Geom. Des..

[26]  Robert J. Wood,et al.  Monolithic fabrication of millimeter-scale machines , 2012 .

[27]  Christian D. Santangelo,et al.  The shape and mechanics of curved-fold origami structures , 2012, 1210.0778.

[28]  J. F. V. Vincent,et al.  Deployable Structures in Nature: Potential for Biomimicking , 2000 .

[29]  K. Kuribayashi,et al.  Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil , 2006 .

[30]  Levi H. Dudte,et al.  Geometric mechanics of curved crease origami. , 2012, Physical review letters.

[31]  Fabrizio Scarpa,et al.  Transverse stiffness and strength of Kirigami zero- ν PEEK honeycombs , 2014 .

[32]  Larry L. Howell,et al.  Kinematic Representations of Pop-Up Paper Mechanisms , 2007 .

[33]  E. Demaine,et al.  Self-folding with shape memory composites† , 2013 .

[34]  Ferdinando Cannella,et al.  Origami-carton tuck-in with a reconfigurable linkage , 2009, 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots.

[35]  Robert J. Wood,et al.  Self-folding shape memory laminates for automated fabrication , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  Fabrizio Scarpa,et al.  SILICOMB PEEK Kirigami cellular structures: mechanical response and energy dissipation through zero and negative stiffness , 2013 .

[37]  Galen T. Pickett,et al.  Self-folding origami membranes , 2007 .

[38]  Ashley P. Thrall,et al.  Accordion shelters: A historical review of origami-like deployable shelters developed by the US military , 2014 .

[39]  M. Dunn,et al.  Photo-origami—Bending and folding polymers with light , 2012 .

[40]  Raeed H. Chowdhury,et al.  Epidermal Electronics , 2011, Science.

[41]  B. Audoly,et al.  Buckling of a stiff film bound to a compliant substrate—Part III:: Herringbone solutions at large buckling parameter , 2008 .

[42]  Devin J. Balkcom,et al.  Robotic origami folding , 2008, Int. J. Robotics Res..

[43]  Joseph E Ford,et al.  Ultrathin cameras using annular folded optics. , 2007, Applied optics.

[44]  David Dureisseix,et al.  Design and Analysis of a Foldable/Unfoldable Corrugated Architectural Curved Envelop , 2012 .

[45]  Wei Gao,et al.  Kinetogami: A Reconfigurable, Combinatorial, and Printable Sheet Folding , 2013 .

[46]  Liesbet Lagae,et al.  Nanoscale origami for 3D optics. , 2011, Small.

[47]  S. N. Upadhe,et al.  INDUSTRIAL ORIGAMI A REVIEW , 2014 .

[48]  M. Frecker,et al.  Investigating the performance and properties of dielectric elastomer actuators as a potential means to actuate origami structures , 2014 .

[49]  Larry L. Howell,et al.  Waterbomb base: a symmetric single-vertex bistable origami mechanism , 2014 .

[50]  R. Muller,et al.  Magnetically actuated, addressable microstructures , 1997 .

[51]  E. Rothwell,et al.  An origami tunable metamaterial , 2012 .

[52]  Erik D. Demaine,et al.  Geometric folding algorithms - linkages, origami, polyhedra , 2007 .

[53]  Ashley P. Thrall,et al.  Honeycomb core sandwich panels for origami-inspired deployable shelters: Multi-objective optimization for minimum weight and maximum energy efficiency , 2014 .

[54]  Daniel M. Aukes,et al.  Self-folding origami: shape memory composites activated by uniform heating , 2014 .

[55]  R. Konings,et al.  Foldable Containers: a New Perspective on Reducing Container-Repositioning Costs , 2001, European Journal of Transport and Infrastructure Research.

[56]  Rob Konings,et al.  Foldable and Standard Containers In Empty Container Repositioning , 2013 .

[57]  Alastair Johnson,et al.  Mechanical tests for foldcore base material properties , 2009 .

[58]  Cai Jianguo,et al.  Morphology analysis of a foldable kirigami structure based on Miura origami , 2014 .

[59]  Keith A. Seffen,et al.  Review of Inflatable Booms for Deployable Space Structures: Packing and Rigidization , 2014 .

[60]  J. P. Whitney,et al.  Pop-up book MEMS , 2011 .

[61]  M. Cecchini,et al.  Predicting self-assembly: from empirism to determinism. , 2012, Chemical Society reviews.

[62]  Koryo Miura,et al.  Method of Packaging and Deployment of Large Membranes in Space , 1985 .

[63]  R. Fernandes,et al.  Self-folding polymeric containers for encapsulation and delivery of drugs. , 2012, Advanced drug delivery reviews.

[64]  E. Hawkesa,et al.  Programmable matter by folding , 2010 .

[65]  G. Hunt,et al.  Twist buckling and the foldable cylinder: an exercise in origami , 2005 .

[66]  James Clements,et al.  Foldscope: Origami-Based Paper Microscope , 2014, PloS one.

[67]  Manuel Collet,et al.  Kirigami Auxetic Pyramidal Core: Mechanical Properties and Wave Propagation Analysis in Damped Lattice , 2013 .

[68]  Tomohiro Tachi,et al.  Folding behaviour of Tachi–Miura polyhedron bellows , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[69]  Isaac L. Delimont,et al.  Material selection for elastic energy absorption in origami-inspired compliant corrugations , 2014 .

[70]  Jon H. Myer,et al.  Optigami—A Tool for Optical Systems Design* , 1969 .

[71]  Evin Gultepe,et al.  Self-folding devices and materials for biomedical applications. , 2012, Trends in biotechnology.

[72]  Jinsong Leng,et al.  Curved Kirigami SILICOMB cellular structures with zero Poisson’s ratio for large deformations and morphing , 2014 .

[73]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[74]  B. Cipra,et al.  Tribute to a Mathemagician , 2005 .

[75]  Darren J. Hartl,et al.  Design and Optimization of a Shape Memory Alloy-Based Self-Folding Sheet , 2013 .

[76]  Erik D. Demaine,et al.  Wrapping spheres with flat paper , 2009, Comput. Geom..

[77]  M. Ruzzene,et al.  Graded conventional-auxetic Kirigami sandwich structures: Flatwise compression and edgewise loading , 2014 .

[78]  Joseph S. B. Mitchell,et al.  Folding flat silhouettes and wrapping polyhedral packages: new results in computational origami , 1999, SCG '99.

[79]  G. Gelinck,et al.  Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.

[80]  Manos M. Tentzeris,et al.  A novel reconfigurable origami spring antenna , 2014, 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[81]  Yutaka Nishiyama,et al.  MIURA FOLDING: APPLYING ORIGAMI TO SPACE EXPLORATION , 2010 .

[82]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[83]  R. Wood,et al.  Self-folding miniature elastic electric devices , 2014 .

[84]  M. Bern A Disk-Packing Algorithm for an Origami Magic Trick , 2007 .

[85]  Zhong You,et al.  A solution for folding rigid tall shopping bags , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.