Solution methods for linear discrete ill-posed problems for color image restoration

This work discusses four algorithms for the solution of linear discrete ill-posed problems with several right-hand side vectors. These algorithms can be applied, for instance, to multi-channel image restoration when the image degradation model is described by a linear system of equations with multiple right-hand sides that are contaminated by errors. Two of the algorithms are block generalizations of the standard Golub–Kahan bidiagonalization method with the block size equal to the number of channels. One algorithm uses standard Golub–Kahan bidiagonalization without restarts for all right-hand sides. These schemes are compared to standard Golub–Kahan bidiagonalization applied to each right-hand side independently. Tikhonov regularization is used to avoid severe error propagation. Numerical examples illustrate the performance of these algorithms. Applications include the restoration of color images.

[1]  Michael T. Heath,et al.  Parallel Algorithms for Matrix Computations , 1987 .

[2]  Lothar Reichel,et al.  Old and new parameter choice rules for discrete ill-posed problems , 2013, Numerical Algorithms.

[3]  D. Calvetti,et al.  Tikhonov Regularization of Large Linear Problems , 2003 .

[4]  H. Sadok,et al.  A block version of BiCGSTAB for linear systems with multiple right-hand sides. , 2003 .

[5]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[6]  Lothar Reichel,et al.  Block Gauss and Anti-Gauss Quadrature with Application to Networks , 2013, SIAM J. Matrix Anal. Appl..

[7]  Nikolas P. Galatsanos,et al.  Least squares restoration of multichannel images , 1991, IEEE Trans. Signal Process..

[8]  Faezeh Toutounian,et al.  Global least squares method (Gl-LSQR) for solving general linear systems with several right-hand sides , 2006, Appl. Math. Comput..

[9]  G. Golub,et al.  Matrices, Moments and Quadrature with Applications , 2009 .

[10]  Franklin T. Luk,et al.  A Block Lanczos Method for Computing the Singular Values and Corresponding Singular Vectors of a Matrix , 1981, TOMS.

[11]  Per Christian Hansen,et al.  L-Curve Curvature Bounds via Lanczos Bidiagonalization , 2001 .

[12]  Lothar Reichel,et al.  GCV for Tikhonov regularization via global Golub–Kahan decomposition , 2016, Numer. Linear Algebra Appl..

[13]  Tony F. Chan,et al.  Analysis of Projection Methods for Solving Linear Systems with Multiple Right-Hand Sides , 1997, SIAM J. Sci. Comput..

[14]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .

[15]  Per Christian Hansen,et al.  Regularization Tools version 4.0 for Matlab 7.3 , 2007, Numerical Algorithms.

[16]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[17]  Michael K. Ng,et al.  Coupled segmentation and denoising/deblurring models for hyperspectral material identification , 2012, Numer. Linear Algebra Appl..

[18]  Maria Rosaria Russo,et al.  On Krylov projection methods and Tikhonov regularization , 2015 .

[19]  Y. Saad,et al.  On the Lánczos method for solving symmetric linear systems with several right-hand sides , 1987 .

[20]  Jing Meng,et al.  A block GCROT(m, k) method for linear systems with multiple right-hand sides , 2014, J. Comput. Appl. Math..

[21]  Khalide Jbilou,et al.  Global Golub-Kahan bidiagonalization applied to large discrete ill-posed problems , 2017, J. Comput. Appl. Math..

[22]  Lothar Reichel,et al.  On the Lanczos and Golub–Kahan reduction methods applied to discrete ill‐posed problems , 2016, Numer. Linear Algebra Appl..

[23]  Dianne P. O'Leary,et al.  Deblurring Images: Matrices, Spectra and Filtering , 2006, J. Electronic Imaging.

[24]  H. Sadok,et al.  OBLIQUE PROJECTION METHODS FOR LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES , 2005 .