Optimal Gegenbauer quadrature over arbitrary integration nodes

This paper treats definite integrations numerically using Gegenbauer quadratures. The novel numerical scheme introduces the idea of exploiting the strengths of the Chebyshev, Legendre, and Gegenbauer polynomials through a unified approach, and using a unique numerical quadrature. In particular, the developed numerical scheme employs the Gegenbauer polynomials to achieve rapid rates of convergence of the quadrature for the small range of the spectral expansion terms. For a large-scale number of expansion terms, the numerical quadrature has the advantage of converging to the optimal Chebyshev and Legendre quadratures in the L^~-norm and L^2-norm, respectively. The key idea is to construct the Gegenbauer quadrature through discretizations at some optimal sets of points of the Gegenbauer-Gauss (GG) type in a certain optimality sense. We show that the Gegenbauer polynomial expansions can produce higher-order approximations to the definite integrals @!"-"1^x^"^if(x)dx of a smooth function f(x)@?C^~[-1,1] for the small range by minimizing the quadrature error at each integration point x"i through a pointwise approach. The developed Gegenbauer quadrature can be applied for approximating integrals with any arbitrary sets of integration nodes. Exact integrations are obtained for polynomials of any arbitrary degree n if the number of columns in the developed Gegenbauer integration matrix (GIM) is greater than or equal to n. The error formula for the Gegenbauer quadrature is derived. Moreover, a study on the error bounds and the convergence rate shows that the optimal Gegenbauer quadrature exhibits very rapid convergence rates, faster than any finite power of the number of Gegenbauer expansion terms. Two efficient computational algorithms are presented for optimally constructing the Gegenbauer quadrature. We illustrate the high-order approximations of the optimal Gegenbauer quadrature through extensive numerical experiments, including comparisons with conventional Chebyshev, Legendre, and Gegenbauer polynomial expansion methods. The present method is broadly applicable and represents a strong addition to the arsenal of numerical quadrature methods.

[1]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[2]  Gamal N. Elnagar State-control spectral Chebyshev parameterization for linearly constrained quadratic optimal control problems , 1997 .

[3]  Leslie Greengard,et al.  Spectral integration and two-point boundary value problems , 1991 .

[4]  Zdzislaw Jackiewicz,et al.  A strategy for choosing Gegenbauer reconstruction parameters for numerical stability , 2009, Appl. Math. Comput..

[5]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[6]  B. Mihaila,et al.  Numerical approximations using Chebyshev polynomial expansions: El-gendi's method revisited , 1999, physics/9901005.

[7]  I. Michael Ross,et al.  Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems , 2005 .

[8]  William W. Hager,et al.  Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method , 2011, Comput. Optim. Appl..

[9]  Chi-Wang Shu,et al.  On the Gibbs phenomenon IV: recovering exponential accuracy in a subinterval from a Gegenbauer partial sum of a piecewise analytic function , 1994 .

[10]  I. Michael Ross,et al.  A Direct Method for Solving Nonsmooth Optimal Control Problems , 2002 .

[11]  Kewei Chen,et al.  Improving tissue segmentation of human brain MRI through preprocessing by the Gegenbauer reconstruction method , 2003, NeuroImage.

[12]  Satish C. Reddy,et al.  A MATLAB differentiation matrix suite , 2000, TOMS.

[13]  Anne Gelb Parameter Optimization and Reduction of Round Off Error for the Gegenbauer Reconstruction Method , 2004, J. Sci. Comput..

[14]  David Benson,et al.  A Gauss pseudospectral transcription for optimal control , 2005 .

[15]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[16]  M. S. Salim,et al.  An optimal ultraspherical approximation of integrals , 2000, Int. J. Comput. Math..

[17]  Nam Mai-Duy,et al.  A spectral collocation method based on integrated Chebyshev polynomials for two-dimensional biharmonic boundary-value problems , 2007 .

[18]  Kate Smith-Miles,et al.  Solving boundary value problems, integral, and integro-differential equations using Gegenbauer integration matrices , 2013, J. Comput. Appl. Math..

[19]  Roberto Barrio,et al.  On the A-Stability of Runge--Kutta Collocation Methods Based on Orthogonal Polynomials , 1999 .

[20]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[21]  Elsayed M. E. Elbarbary,et al.  Pseudospectral integration matrix and boundary value problems , 2007, Int. J. Comput. Math..

[22]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[23]  Elsayed M. E. Elbarbary,et al.  Integration Preconditioning Matrix for Ultraspherical Pseudospectral Operators , 2006, SIAM J. Sci. Comput..

[24]  Timothy Nigel Phillips,et al.  On the coefficients of integrated expansions of ultraspherical polynomials , 1990 .

[25]  S. E. El-gendi,et al.  Chebyshev Solution of Differential, Integral and Integro-Differential Equations , 1969, Comput. J..

[26]  Anne Gelb,et al.  Determining Analyticity for Parameter Optimization of the Gegenbauer Reconstruction Method , 2005, SIAM J. Sci. Comput..

[27]  Richard M. Everson,et al.  On the errors incurred calculating derivatives using Chebyshev polynomials , 1992 .

[28]  Qi Gong,et al.  A Chebyshev pseudospectral method for nonlinear constrained optimal control problems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[29]  Farideh Ghoreishi,et al.  A preconditioned implementation of pseudospectral methods on arbitrary grids , 2004, Appl. Math. Comput..

[30]  P. N. Paraskevopoulos,et al.  Chebyshev series approach to system identification, analysis and optimal control , 1983 .

[31]  Jae-Hun Jung,et al.  Recovery of High Order Accuracy in Radial Basis Function Approximations of Discontinuous Problems , 2010, J. Sci. Comput..

[32]  Eric W. Weisstein,et al.  The CRC concise encyclopedia of mathematics , 1999 .

[33]  S. Mohammad Hosseini,et al.  Integration matrix based on arbitrary grids with a preconditioner for pseudospectral method , 2008 .

[34]  Laura B. Lurati,et al.  Padé-Gegenbauer suppression of Runge phenomenon in the diagonal limit of Gegenbauer approximations , 2007, J. Comput. Phys..

[35]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers , 2009 .

[36]  Mohsen Razzaghi,et al.  HYBRID FUNCTIONS APPROACH FOR LINEARLY CONSTRAINED QUADRATIC OPTIMAL CONTROL PROBLEMS , 2003 .

[37]  A. Malek,et al.  PSEUDOSPECTRAL COLLOCATION METHODS FOR FOURTH ORDER DIFFERENTIAL EQUATIONS , 1994 .

[38]  Tamás Kalmár-Nagy,et al.  Delay differential equations : recent advances and new directions , 2009 .

[39]  Amir Averbuch,et al.  Analysis and Application of Fourier--Gegenbauer Method to Stiff Differential Equations , 1996 .

[40]  Alex Solomonoff,et al.  Accuracy Enhancement for Higher Derivatives using Chebyshev Collocation and a Mapping Technique , 1997, SIAM J. Sci. Comput..

[41]  Jae-Hun Jung,et al.  A Review of David Gottlieb's Work on the Resolution of the Gibbs Phenomenon , 2011 .

[42]  Analysis, parameter identification and optimal control of time-varying systems via general orthogonal polynomials , 1989 .

[43]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[44]  R. V. Dooren,et al.  A Chebyshev technique for solving nonlinear optimal control problems , 1988 .

[45]  Tang,et al.  ON SPECTRAL METHODS FOR VOLTERRA INTEGRAL EQUATIONS AND THE CONVERGENCE ANALYSIS , 2008 .

[46]  S. Bayin,et al.  Mathematical Methods in Science and Engineering , 2006 .

[47]  S. Orszag Accurate solution of the Orr–Sommerfeld stability equation , 1971, Journal of Fluid Mechanics.

[48]  Kareem T. Elgindy,et al.  Solving optimal control problems using a gegenbauer transcription method , 2012, 2012 2nd Australian Control Conference.

[49]  Moshe Israeli,et al.  Spectrally Accurate Solution of Nonperiodic Differential Equations by the Fourier--Gegenbauer Method , 1997 .

[50]  Anil V. Rao,et al.  Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .

[51]  Tobin A. Driscoll,et al.  Automatic spectral collocation for integral, integro-differential, and integrally reformulated differential equations , 2010, J. Comput. Phys..

[52]  Eid H. Doha,et al.  An accurate solution of parabolic equations by expansion in ultraspherical polynomials , 1990 .

[53]  Kareem T. Elgindy Generation of higher order pseudospectral integration matrices , 2009, Appl. Math. Comput..

[54]  Eid H. Doha,et al.  Efficient spectral ultraspherical-dual-Petrov-Galerkin algorithms for the direct solution of (2n + 1)th-order linear differential equations , 2009, Math. Comput. Simul..

[55]  Cemil Kocar,et al.  Ultraspherical-polynomials approximation to the radiative heat transfer in a slab with reflective boundaries , 2008 .

[56]  W. Light,et al.  A Comparison Between Chebyshev and Ultraspherical Expansions , 1978 .

[57]  B. Fornberg An improved pseudospectral method for fluid dynamics boundary value problems , 1990 .

[58]  Olivier Gibaru,et al.  Differentiation by integration with Jacobi polynomials , 2011, J. Comput. Appl. Math..

[59]  Abdel-Rahman Hedar,et al.  A new robust line search technique based on Chebyshev polynomials , 2008, Appl. Math. Comput..

[60]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[61]  John P. Boyd,et al.  Computing the zeros, maxima and inflection points of Chebyshev, Legendre and Fourier series: solving transcendental equations by spectral interpolation and polynomial rootfinding , 2007 .

[62]  B. Gustafsson The work of David Gottlieb : a success story , 2011 .

[63]  Gamal N. Elnagar,et al.  Short communication: A collocation-type method for linear quadratic optimal control problems , 1997 .