Belief C-Means: An extension of Fuzzy C-Means algorithm in belief functions framework
暂无分享,去创建一个
Quan Pan | Jean Dezert | Zhunga Liu | Grégoire Mercier | Q. Pan | G. Mercier | J. Dezert | Zhunga Liu
[1] Glenn Shafer,et al. A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.
[2] S. P. Lloyd,et al. Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.
[3] Thierry Denoeux,et al. ECM: An evidential version of the fuzzy c , 2008, Pattern Recognit..
[4] M. P. Windham. Numerical classification of proximity data with assignment measures , 1985 .
[5] Florentin Smarandache,et al. Advances and Applications of DSmT for Information Fusion , 2004 .
[6] Thierry Denoeux,et al. EVCLUS: evidential clustering of proximity data , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).
[7] S. Sen,et al. Clustering of relational data containing noise and outliers , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).
[8] R. Yager,et al. Intelligent Systems for Information Processing: From Representation to Applications , 2003 .
[9] T. Denœux,et al. Clustering of proximity data using belief functions , 2003 .
[10] Philippe Smets,et al. Decision making in the TBM: the necessity of the pignistic transformation , 2005, Int. J. Approx. Reason..
[11] Donald W. Bouldin,et al. A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[12] Alessandro Saffiotti,et al. The Transferable Belief Model , 1991, ECSQARU.
[13] James M. Keller,et al. The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..
[14] Philippe Smets,et al. The Combination of Evidence in the Transferable Belief Model , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[15] Pierre Loonis,et al. The fuzzy c+2-means: solving the ambiguity rejection in clustering , 2000, Pattern Recognit..
[16] James C. Bezdek,et al. Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.
[17] Rajesh N. Davé,et al. Characterization and detection of noise in clustering , 1991, Pattern Recognit. Lett..
[18] Thierry Denoeux,et al. Clustering interval-valued proximity data using belief functions , 2004, Pattern Recognit. Lett..
[19] R. Fisher. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .