Mechanisms of copper homeostasis in bacteria

Copper is an important micronutrient required as a redox co-factor in the catalytic centers of enzymes. However, free copper is a potential hazard because of its high chemical reactivity. Consequently, organisms exert a tight control on Cu+ transport (entry-exit) and traffic through different compartments, ensuring the homeostasis required for cuproprotein synthesis and prevention of toxic effects. Recent studies based on biochemical, bioinformatics, and metalloproteomics approaches, reveal a highly regulated system of transcriptional regulators, soluble chaperones, membrane transporters, and target cuproproteins distributed in the various bacterial compartments. As a result, new questions have emerged regarding the diversity and apparent redundancies of these components, their irregular presence in different organisms, functional interactions, and resulting system architectures.

[1]  Tong Liu,et al.  CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. , 2007, Nature chemical biology.

[2]  C. Chow,et al.  Copper toxicity, oxidative stress, and antioxidant nutrients. , 2003, Toxicology.

[3]  C. Thompson,et al.  Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. , 1983, Journal of general microbiology.

[4]  D. Thiele,et al.  Biochemical and Genetic Analyses of Yeast and Human High Affinity Copper Transporters Suggest a Conserved Mechanism for Copper Uptake* , 2002, The Journal of Biological Chemistry.

[5]  I. Bertini,et al.  Characterization of the Binding Interface between the Copper Chaperone Atx1 and the First Cytosolic Domain of Ccc2 ATPase* 210 , 2001, The Journal of Biological Chemistry.

[6]  Deenah Osman,et al.  Copper homeostasis in bacteria. , 2008, Advances in applied microbiology.

[7]  S. Ouchane,et al.  CtpA, a Copper-translocating P-type ATPase Involved in the Biogenesis of Multiple Copper-requiring Enzymes* , 2010, The Journal of Biological Chemistry.

[8]  C. Rensing,et al.  Escherichia coli mechanisms of copper homeostasis in a changing environment. , 2003, FEMS microbiology reviews.

[9]  H. Hennecke,et al.  Copper Starvation-inducible Protein for Cytochrome Oxidase Biogenesis in Bradyrhizobium japonicum* , 2012, The Journal of Biological Chemistry.

[10]  Peter W. Andrew,et al.  The combined actions of the copper‐responsive repressor CsoR and copper‐metallochaperone CopZ modulate CopA‐mediated copper efflux in the intracellular pathogen Listeria monocytogenes , 2011, Molecular microbiology.

[11]  K. Waldron,et al.  Copper Homeostasis in Salmonella Is Atypical and Copper-CueP Is a Major Periplasmic Metal Complex* , 2010, The Journal of Biological Chemistry.

[12]  J. Lutkenhaus Role of a major outer membrane protein in Escherichia coli , 1977, Journal of bacteriology.

[13]  Seiki Kuramitsu,et al.  Structural and functional characterization of the transcriptional repressor CsoR from Thermus thermophilus HB8. , 2010, Microbiology.

[14]  Frank Sargent,et al.  The Tat protein translocation pathway and its role in microbial physiology. , 2003, Advances in microbial physiology.

[15]  J. Argüello,et al.  The structure and function of heavy metal transport P1B-ATPases , 2007, BioMetals.

[16]  A. Gupta,et al.  Diversity of silver resistance genes in IncH incompatibility group plasmids. , 2001, Microbiology.

[17]  C. Dupont,et al.  Copper toxicity and the origin of bacterial resistance--new insights and applications. , 2011, Metallomics : integrated biometal science.

[18]  D. Cooksey,et al.  Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato , 1988, Journal of bacteriology.

[19]  Seiki Kuramitsu,et al.  Structural and functional characterization of the transcriptional repressor CsoR from Thermus thermophilus HB 8 , 2010 .

[20]  C. Cambillau,et al.  A novel type of catalytic copper cluster in nitrous oxide reductase , 2000, Nature Structural Biology.

[21]  F. C. Soncini,et al.  Dissecting the Salmonella response to copper. , 2007, Microbiology.

[22]  D. Giedroc,et al.  Metalloregulatory proteins: metal selectivity and allosteric switching. , 2011, Biophysical chemistry.

[23]  F. Daldal,et al.  Biogenesis of cbb(3)-type cytochrome c oxidase in Rhodobacter capsulatus. , 2012, Biochimica et biophysica acta.

[24]  B. Henrissat,et al.  Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes , 2013, Biotechnology for Biofuels.

[25]  I. Bertini,et al.  A redox switch in CopC: An intriguing copper trafficking protein that binds copper(I) and copper(II) at different sites , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Slauch,et al.  Either periplasmic tethering or protease resistance is sufficient to allow a SodC to protect Salmonella enterica serovar Typhimurium from phagocytic superoxide , 2011, Molecular microbiology.

[27]  Aleksandar Cvetkovic,et al.  Microbial metalloproteomes are largely uncharacterized , 2010, Nature.

[28]  J. Cha,et al.  Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[29]  A. K. Mandal,et al.  Functional roles of metal binding domains of the Archaeoglobus fulgidus Cu(+)-ATPase CopA. , 2003, Biochemistry.

[30]  M. Finel,et al.  Purification of the 45 kDa, membrane bound NADH dehydrogenase of Escherichia coli (NDH‐2) and analysis of its interaction with ubiquinone analogues , 2000, FEBS letters.

[31]  Khadine A. Higgins,et al.  A new structural paradigm in copper resistance in Streptococcus pneumoniae , 2012, Nature chemical biology.

[32]  Tej B. Shrestha,et al.  Copper resistance is essential for virulence of Mycobacterium tuberculosis , 2011, Proceedings of the National Academy of Sciences.

[33]  C. Bender,et al.  Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance , 1986, Journal of bacteriology.

[34]  H. Dalton,et al.  The membrane-associated form of methane mono-oxygenase from Methylococcus capsulatus (Bath) is a copper/iron protein. , 2003, The Biochemical journal.

[35]  Y. Matoba,et al.  Crystallographic Evidence That the Dinuclear Copper Center of Tyrosinase Is Flexible during Catalysis* , 2006, Journal of Biological Chemistry.

[36]  J. Argüello,et al.  Chaperone-mediated Cu+ Delivery to Cu+ Transport ATPases , 2009, The Journal of Biological Chemistry.

[37]  C. Coulson,et al.  Coordination Chemistry , 1968, Nature.

[38]  S. Singh,et al.  Cuprous Oxidase Activity of CueO from Escherichia coli , 2004, Journal of bacteriology.

[39]  K. Gerdes,et al.  Copper‐dependent reciprocal transcriptional regulation of methane monooxygenase genes in Methylococcus capsulatus and Methylosinus trichosporium , 1997, Molecular Microbiology.

[40]  J. Argüello,et al.  Mechanism of Cu+-transporting ATPases: Soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites , 2008, Proceedings of the National Academy of Sciences.

[41]  P. Langford,et al.  Bacterial [Cu,Zn]-superoxide dismutase: phylogenetically distinct from the eukaryotic enzyme, and not so rare after all! , 1995, Microbiology.

[42]  D. Winge,et al.  Copper trafficking to the mitochondrion and assembly of copper metalloenzymes. , 2006, Biochimica et biophysica acta.

[43]  D. Goodlett,et al.  Interactions between CusF and CusB identified by NMR spectroscopy and chemical cross-linking coupled to mass spectrometry. , 2011, Biochemistry.

[44]  A. Mondragón,et al.  Molecular Basis of Metal-Ion Selectivity and Zeptomolar Sensitivity by CueR , 2003, Science.

[45]  J. Argüello,et al.  Metal Transport across Biomembranes: Emerging Models for a Distinct Chemistry* , 2012, The Journal of Biological Chemistry.

[46]  P. Nissen,et al.  Crystal structure of a copper-transporting PIB-type ATPase , 2011, Nature.

[47]  B. Barquera,et al.  The superfamily of heme-copper respiratory oxidases , 1994, Journal of bacteriology.

[48]  R. Kim,et al.  The Copper Active Site of CBM33 Polysaccharide Oxygenases , 2013, Journal of the American Chemical Society.

[49]  J. Kaplan,et al.  The Mechanism of Copper Uptake Mediated by Human CTR1 , 2005, Journal of Biological Chemistry.

[50]  R. Krishnakumar,et al.  Structural Properties of Periplasmic SodCI That Correlate with Virulence in Salmonella enterica Serovar Typhimurium , 2007, Journal of bacteriology.

[51]  V. Gladyshev,et al.  Comparative genomics analysis of the metallomes. , 2013, Metal ions in life sciences.

[52]  M. Busch,et al.  Molecular analysis of the , 1996 .

[53]  H. Decker,et al.  Bacterial tyrosinases. , 2006, Systematic and applied microbiology.

[54]  J. Godden,et al.  The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. , 1991, Science.

[55]  C. Rensing,et al.  The copper metallome in prokaryotic cells. , 2013, Metal ions in life sciences.

[56]  Akira Ishihama,et al.  Transcriptional response of Escherichia coli to external copper , 2005, Molecular microbiology.

[57]  F. Daldal,et al.  Roles of the ccoGHIS gene products in the biogenesis of the cbb(3)-type cytochrome c oxidase. , 2000, Journal of molecular biology.

[58]  P. Rich,et al.  Two Menkes-type ATPases Supply Copper for Photosynthesis inSynechocystis PCC 6803* , 2001, The Journal of Biological Chemistry.

[59]  J. Helmann,et al.  CsoR regulates the copper efflux operon copZA in Bacillus subtilis. , 2007, Microbiology.

[60]  T. Stemmler,et al.  Structure of the Two Transmembrane Cu+ Transport Sites of the Cu+-ATPases* , 2008, Journal of Biological Chemistry.

[61]  Ivano Bertini,et al.  Sco proteins are involved in electron transfer processes , 2011, JBIC Journal of Biological Inorganic Chemistry.

[62]  I. G. Young,et al.  Characterization of the respiratory NADH dehydrogenase of Escherichia coli and reconstitution of NADH oxidase in ndh mutant membrane vesicles. , 1981, Biochemistry.

[63]  J. Imlay,et al.  The regulation and role of the periplasmic copper, zinc superoxide dismutase of Escherichia coli , 1999, Molecular microbiology.

[64]  C. Rensing,et al.  CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[65]  M. Zaballa,et al.  Flexibility of the metal-binding region in apo-cupredoxins , 2012, Proceedings of the National Academy of Sciences.

[66]  G. Grass,et al.  The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. , 2001, Microbiology.

[67]  T. Kohzuma,et al.  Metal-ligand interplay in blue copper proteins studied by 1H NMR spectroscopy: Cu(II)-pseudoazurin and Cu(II)-rusticyanin. , 2002, Journal of the American Chemical Society.

[68]  H. Nikaido,et al.  AcrA is a highly asymmetric protein capable of spanning the periplasm. , 1999, Journal of molecular biology.

[69]  R C Wade,et al.  Blue copper proteins: A comparative analysis of their molecular interaction properties , 2000, Protein science : a publication of the Protein Society.

[70]  D. Giedroc,et al.  Coordination chemistry of bacterial metal transport and sensing. , 2009, Chemical reviews.

[71]  R. Hütter,et al.  Cloning and expression of the genetically unstable tyrosinase structural gene from Streptomyces glaucescens , 2004, Molecular and General Genetics MGG.

[72]  M. Aftab,et al.  Cloning and Expression , 2011 .

[73]  A. Rosenzweig,et al.  Copper methanobactin: a molecule whose time has come. , 2008, Current opinion in chemical biology.

[74]  S. Elliott,et al.  The Particulate Methane Monooxygenase from Methylococcus capsulatus (Bath) Is a Novel Copper-containing Three-subunit Enzyme , 1998, The Journal of Biological Chemistry.

[75]  D. Giedroc,et al.  Molecular insights into the metal selectivity of the copper(I)-sensing repressor CsoR from Bacillus subtilis. , 2009, Biochemistry.

[76]  H. Westerhoff,et al.  The NosX and NirX Proteins of Paracoccus denitrificans Are Functional Homologues: Their Role in Maturation of Nitrous Oxide Reductase , 2000, Journal of bacteriology.

[77]  S. Vogt,et al.  Periplasmic response upon disruption of transmembrane Cu transport in Pseudomonas aeruginosa. , 2013, Metallomics : integrated biometal science.

[78]  D. Rees,et al.  A P-type ATPase importer that discriminates between essential and toxic transition metals , 2009, Proceedings of the National Academy of Sciences.

[79]  W. Zumft,et al.  Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type. , 2005, Journal of inorganic biochemistry.

[80]  N. Brown,et al.  The Pco proteins are involved in periplasmic copper handling in Escherichia coli. , 2002, Biochemical and biophysical research communications.

[81]  J. Argüello,et al.  Distinct functional roles of homologous Cu+ efflux ATPases in Pseudomonas aeruginosa , 2010, Molecular microbiology.

[82]  B. Berks,et al.  The Tat Protein Export Pathway , 2010, EcoSal Plus.

[83]  J. Argüello,et al.  Bacterial transition metal P(1B)-ATPases: transport mechanism and roles in virulence. , 2011, Biochemistry.

[84]  G. Tollin,et al.  Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[85]  A. Rosenzweig,et al.  Structural biology of copper trafficking. , 2009, Chemical reviews.

[86]  B. Berks,et al.  A novel protein transport system involved in the biogenesis of bacterial electron transfer chains. , 2000, Biochimica et biophysica acta.

[87]  N. Brown,et al.  The MerR family of transcriptional regulators. , 2003, FEMS microbiology reviews.

[88]  N. Go,et al.  Function and molecular evolution of multicopper blue proteins , 2005, Cellular and Molecular Life Sciences CMLS.

[89]  M. McEvoy,et al.  Switch or Funnel: How RND-Type Transport Systems Control Periplasmic Metal Homeostasis , 2011, Journal of Bacteriology.

[90]  D. Cooksey Copper uptake and resistance in bacteria , 1993, Molecular microbiology.

[91]  H. Claus Laccases and their occurrence in prokaryotes , 2003, Archives of Microbiology.

[92]  M. Huber,et al.  Primary structure of tyrosinase from Streptomyces glaucescens. , 1985, Biochemistry.

[93]  D. Giedroc,et al.  Unnatural amino acid substitution as a probe of the allosteric coupling pathway in a mycobacterial Cu(I) sensor. , 2009, Journal of the American Chemical Society.

[94]  J. Argüello Identification of Ion-Selectivity Determinants in Heavy-Metal Transport P1B-type ATPases , 2003, The Journal of Membrane Biology.

[95]  M. Niederweis,et al.  Rv1698 of Mycobacterium tuberculosis Represents a New Class of Channel-forming Outer Membrane Proteins* , 2008, Journal of Biological Chemistry.

[96]  N. Brown,et al.  Copper-inducible transcriptional regulation at two promoters in the Escherichia coli copper resistance determinant pco. , 1997, Microbiology.

[97]  Perry G. Ridge,et al.  Comparative Genomic Analyses of Copper Transporters and Cuproproteomes Reveal Evolutionary Dynamics of Copper Utilization and Its Link to Oxygen , 2008, PloS one.

[98]  W. Zumft,et al.  Requirements for CuA and Cu-S Center Assembly of Nitrous Oxide Reductase Deduced from Complete Periplasmic Enzyme Maturation in the Nondenitrifier Pseudomonas putida , 2003, Journal of bacteriology.

[99]  J. Argüello,et al.  The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function , 2011, BioMetals.

[100]  M. R. Parsons,et al.  Catalytic mechanism of the quinoenzyme amine oxidase from Escherichia coli: exploring the reductive half-reaction. , 1997, Biochemistry.

[101]  Y. Lee,et al.  Mutational study of Streptomyces tyrosinase trans-activator MelC1. MelC1 is likely a chaperone for apotyrosinase. , 1993, The Journal of biological chemistry.

[102]  R. Farías,et al.  Sites of electron transfer to membrane-bound copper and hydroperoxide-induced damage in the respiratory chain of Escherichia coli. , 1995, Archives of biochemistry and biophysics.

[103]  D. Reyon,et al.  Crystal structure of the membrane fusion protein CusB from Escherichia coli. , 2009, Journal of molecular biology.

[104]  D. Cooksey Plasmid-Determined Copper Resistance in Pseudomonas syringae from Impatiens , 1990, Applied and environmental microbiology.

[105]  Thomas V. O'Halloran,et al.  The Independent cue and cusSystems Confer Copper Tolerance during Aerobic and Anaerobic Growth inEscherichia coli * , 2001, The Journal of Biological Chemistry.

[106]  I. Bertini,et al.  Solution Structures of a Cyanobacterial Metallochaperone , 2004, Journal of Biological Chemistry.

[107]  W. Thiel,et al.  Coordination chemistry at carbon. , 2009, Nature chemistry.

[108]  N. Go,et al.  Novel types of two‐domain multi‐copper oxidases: possible missing links in the evolution , 2003 .

[109]  K. Fisher,et al.  The copper supply pathway to a Salmonella Cu,Zn‐superoxide dismutase (SodCII) involves P1B‐type ATPase copper efflux and periplasmic CueP , 2013, Molecular microbiology.

[110]  M. Niederweis,et al.  Resistance mechanisms of Mycobacterium tuberculosis against phagosomal copper overload. , 2012, Tuberculosis.

[111]  F. Daldal,et al.  Novel Transporter Required for Biogenesis of cbb3-Type Cytochrome c Oxidase in Rhodobacter capsulatus , 2012, mBio.

[112]  D. Cooksey Characterization of a Copper Resistance Plasmid Conserved in Copper-Resistant Strains of Pseudomonas syringae pv. tomato , 1987, Applied and environmental microbiology.

[113]  T. Tetaz,et al.  Plasmid-controlled resistance to copper in Escherichia coli , 1983, Journal of bacteriology.

[114]  A. Odermatt,et al.  Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. , 1993, The Journal of biological chemistry.

[115]  J. Helmann,et al.  Direct substitution and assisted dissociation pathways for turning off transcription by a MerR-family metalloregulator , 2012, Proceedings of the National Academy of Sciences.

[116]  J. Argüello,et al.  The Mechanism of Cu+ Transport ATPases , 2012, The Journal of Biological Chemistry.

[117]  B. Valderrama,et al.  Evolution and diversity of periplasmic proteins involved in copper homeostasis in gamma proteobacteria , 2012, BMC Microbiology.

[118]  C. Tinberg,et al.  The copper chelator methanobactin from Methylosinus trichosporium OB3b binds copper(I). , 2005, Journal of the American Chemical Society.

[119]  M. Solioz,et al.  Response of Gram-positive bacteria to copper stress , 2009, JBIC Journal of Biological Inorganic Chemistry.

[120]  C. Rensing,et al.  Genes involved in copper resistance influence survival of Pseudomonas aeruginosa on copper surfaces , 2009, Journal of applied microbiology.

[121]  C. Rensing,et al.  Molecular Analysis of the Copper-Transporting Efflux System CusCFBA of Escherichia coli , 2003, Journal of bacteriology.

[122]  B. Ludwig,et al.  Cytochrome c oxidase--structure, function, and physiology of a redox-driven molecular machine. , 2003, Reviews of physiology, biochemistry and pharmacology.

[123]  I. Bertini,et al.  Mechanism of Cu(A) assembly. , 2008, Nature chemical biology.

[124]  R. Huber,et al.  X-ray structures and mechanistic implications of three functional derivatives of ascorbate oxidase from zucchini. Reduced, peroxide and azide forms. , 1994, Journal of molecular biology.

[125]  M. Marahiel,et al.  Copper Acquisition Is Mediated by YcnJ and Regulated by YcnK and CsoR in Bacillus subtilis , 2009, Journal of bacteriology.

[126]  A. G. Wedd,et al.  Copper Resistance in E. coli: The Multicopper Oxidase PcoA Catalyzes Oxidation of Copper(I) in CuICuII‐PcoC , 2008, Chembiochem : a European journal of chemical biology.

[127]  C. Rensing,et al.  CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. , 2001, Biochemical and biophysical research communications.

[128]  D. Giedroc,et al.  A Novel Cyanobacterial SmtB/ArsR Family Repressor Regulates the Expression of a CPx-ATPase and a Metallothionein in Response to Both Cu(I)/Ag(I) and Zn(II)/Cd(II)* , 2004, Journal of Biological Chemistry.

[129]  J. Foster,et al.  Virulent Salmonella typhimurium has two periplasmic Cu, Zn-superoxide dismutases. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[130]  B. Basu The particulate methane monooxygenase from Methylococcus capsulatus (Bath) , 2000 .

[131]  J. Moura,et al.  Metalloenzymes of the denitrification pathway. , 2006, Journal of inorganic biochemistry.

[132]  J. Imlay,et al.  The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity , 2009, Proceedings of the National Academy of Sciences.

[133]  M. McEvoy,et al.  Regulation of Cu(I)/Ag(I) efflux genes in Escherichia coli by the sensor kinase CusS. , 2012, FEMS microbiology letters.

[134]  Y. Lee,et al.  Copper transfer and activation of the Streptomyces apotyrosinase are mediated through a complex formation between apotyrosinase and its trans-activator MelC1. , 1992, The Journal of biological chemistry.

[135]  T. Masujima,et al.  Cloning and sequence analysis of the highly expressed melanin-synthesizing gene operon from Streptomyces castaneoglobisporus , 1996, Applied Microbiology and Biotechnology.

[136]  Javier De Las Rivas,et al.  Evidence for Cu(I)-thiolate ligation and prediction of a putative copper-binding site in the Escherichia coli NADH dehydrogenase-2. , 2002, Archives of biochemistry and biophysics.

[137]  Robert J.P. Williams,et al.  The Biological Chemistry of the Elements: The Inorganic Chemistry of Life , 2001 .

[138]  John Chan,et al.  SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis , 2003, Molecular microbiology.

[139]  Tong Liu,et al.  A Cu(I)-sensing ArsR family metal sensor protein with a relaxed metal selectivity profile. , 2008, Biochemistry.

[140]  P. Cobine,et al.  The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor , 1999, FEBS letters.

[141]  D. Cooksey,et al.  Induction of the copper resistance operon from Pseudomonas syringae , 1988, Journal of bacteriology.

[142]  T. Yeates,et al.  Plastocyanin: Structural and functional analysis , 1994, Journal of bioenergetics and biomembranes.

[143]  I. Bertini,et al.  Metallochaperones and metal-transporting ATPases: a comparative analysis of sequences and structures. , 2002, Genome research.

[144]  M. Lidstrom,et al.  Particulate methane monooxygenase genes in methanotrophs , 1995, Journal of bacteriology.

[145]  M. Parsek,et al.  Survival and Growth in the Presence of Elevated Copper: Transcriptional Profiling of Copper-Stressed Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[146]  J. Zahn,et al.  Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath) , 1996, Journal of bacteriology.

[147]  F. C. Soncini,et al.  Bacterial sensing of and resistance to gold salts , 2007, Molecular microbiology.

[148]  M. Saier,et al.  The major facilitator superfamily (MFS) revisited , 2012, The FEBS journal.

[149]  N. Brown,et al.  Molecular genetics and transport analysis of the copper‐resistance determinant (pco) from Escherichia coli plasmid pRJ1004 , 1995, Molecular microbiology.

[150]  A. Rosenzweig,et al.  Dual Pathways for Copper Uptake by Methanotrophic Bacteria* , 2011, The Journal of Biological Chemistry.

[151]  I. Bertini,et al.  Cyanobacterial metallochaperone inhibits deleterious side reactions of copper , 2011, Proceedings of the National Academy of Sciences.

[152]  D. Winge,et al.  Copper metallochaperones. , 2010, Annual review of biochemistry.

[153]  C. Bauer,et al.  Involvement of SenC in Assembly of Cytochrome c Oxidase in Rhodobacter capsulatus , 2005, Journal of bacteriology.

[154]  Thomas V. O'Halloran,et al.  Identification of a Copper-Responsive Two-Component System on the Chromosome of Escherichia coli K-12 , 2000, Journal of bacteriology.

[155]  C. Sassetti,et al.  A Novel P1B-type Mn2+-transporting ATPase Is Required for Secreted Protein Metallation in Mycobacteria* , 2013, The Journal of Biological Chemistry.

[156]  I. Bertini,et al.  Solution structure of CopC: a cupredoxin-like protein involved in copper homeostasis. , 2002, Structure.

[157]  Ivano Bertini,et al.  Cellular copper distribution: a mechanistic systems biology approach , 2010, Cellular and Molecular Life Sciences.

[158]  Kathleen S. McGreevy,et al.  Molecular recognition in copper trafficking. , 2010, Natural product reports.

[159]  F. C. Soncini,et al.  Alternative periplasmic copper‐resistance mechanisms in Gram negative bacteria , 2009, Molecular microbiology.

[160]  C. Knapp,et al.  Methane monooxygenase gene expression mediated by methanobactin in the presence of mineral copper sources , 2007, Proceedings of the National Academy of Sciences.

[161]  M. Lidstrom,et al.  Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath. , 1999, Microbiology.

[162]  T. O’Halloran,et al.  Cu(I) recognition via cation-pi and methionine interactions in CusF. , 2008, Nature chemical biology.

[163]  W. Kaim,et al.  Copper—A “Modern” Bioelement , 1996 .

[164]  R. Farías,et al.  The Cu(II)-reductase NADH dehydrogenase-2 of Escherichia coli improves the bacterial growth in extreme copper concentrations and increases the resistance to the damage caused by copper and hydroperoxide. , 2006, Archives of biochemistry and biophysics.

[165]  J. Cha,et al.  Copper Hypersensitivity and Uptake in Pseudomonas syringae Containing Cloned Components of the Copper Resistance Operon , 1993, Applied and environmental microbiology.

[166]  J. Imlay,et al.  Cloning and analysis of sodC, encoding the copper-zinc superoxide dismutase of Escherichia coli , 1996, Journal of bacteriology.

[167]  T. O’Halloran,et al.  Transcriptional Activation of an Escherichia coliCopper Efflux Regulon by the Chromosomal MerR Homologue, CueR* , 2000, The Journal of Biological Chemistry.

[168]  R. Farías,et al.  Characterization of an NADH-linked cupric reductase activity from the Escherichia coli respiratory chain. , 1999, Archives of biochemistry and biophysics.

[169]  Julia Roberts,et al.  Identification of a copper-binding metallothionein in pathogenic mycobacteria. , 2008, Nature chemical biology.

[170]  F. Daldal,et al.  The ScoI homologue SenC is a copper binding protein that interacts directly with the cbb₃-type cytochrome oxidase in Rhodobacter capsulatus. , 2012, Biochimica et biophysica acta.

[171]  E T Adman,et al.  Copper protein structures. , 1991, Advances in protein chemistry.

[172]  Sunil Kumar,et al.  Metallochaperones Regulate Intracellular Copper Levels , 2013, PLoS Comput. Biol..