A logarithmically improved regularity criterion for the surface quasi-geostrophic equation

Abstract In this paper, we consider the two-dimensional dissipative surface quasi-geostrophic equation, and establish a logarithmically improved regularity criterion. Consequently, our result extends the regularity criterion result of Dong and Pavlovie (2009). In addition, a logarithmically improved regularity criterion to the three-dimensional Navier–Stokes equations is also derived by the same arguments. Therefore, this result extends and improves many previous works.

[1]  Xinwei Yu,et al.  Remarks on the Global Regularity for the Super-Critical 2D Dissipative Quasi-Geostrophic Equation , 2006 .

[2]  L. Caffarelli,et al.  Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation , 2006, math/0608447.

[3]  C. Kenig,et al.  Well‐posedness and scattering results for the generalized korteweg‐de vries equation via the contraction principle , 1993 .

[4]  Peter Constantin,et al.  Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation , 2008 .

[5]  Vlad Vicol,et al.  Nonlinear maximum principles for dissipative linear nonlocal operators and applications , 2011, 1110.0179.

[6]  Zhaoyin Xiang,et al.  A regularity criterion for the critical and supercritical dissipative quasi-geostrophic equations , 2010, Appl. Math. Lett..

[7]  A. Volberg,et al.  Global well-posedness for the critical 2D dissipative quasi-geostrophic equation , 2007 .

[8]  Ning Ju,et al.  The Maximum Principle and the Global Attractor for the Dissipative 2D Quasi-Geostrophic Equations , 2005 .

[9]  Nataša Pavlović,et al.  Regularity Criteria for the Dissipative Quasi-Geostrophic Equations in Hölder Spaces , 2009 .

[10]  F. Nazarov,et al.  Variation on a theme of caffarelli and vasseur , 2009, 0908.0923.

[11]  Peter Constantin,et al.  Behavior of solutions of 2D quasi-geostrophic equations , 1999 .

[12]  Jia Yuan On regularity criterion for the dissipative quasi-geostrophic equations , 2008 .

[13]  Bo-Qing Dong,et al.  A remark on regularity criterion for the dissipative quasi-geostrophic equations , 2007 .

[14]  Andrew J. Majda,et al.  Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar , 1994 .

[15]  Hideo Kozono,et al.  Bilinear estimates in BMO and the Navier-Stokes equations , 2000 .

[16]  Takayoshi Ogawa,et al.  The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations , 2002 .

[17]  Peter Constantin,et al.  Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations , 2007, math/0701594.

[18]  Dongho Chae,et al.  On the Regularity Conditions for the Dissipative Quasi-geostrophic Equations , 2006, SIAM J. Math. Anal..

[19]  Baoquan Yuan Regularity condition of solutions to the quasi-geostrophic equations in Besov spaces with negative indices , 2010 .

[20]  Natasa Pavlovic,et al.  A regularity criterion for the dissipative quasi-geostrophic equations , 2007, 0710.5201.

[21]  B. Jawerth,et al.  A discrete transform and decompositions of distribution spaces , 1990 .

[22]  Z. Ye Some New Regularity Criteria for the 2D Euler-Boussinesq Equations Via the Temperature , 2018 .