Logic for Programming, Artificial Intelligence, and Reasoning

The fragment of propositional logic known as Horn theories plays a central role in automated reasoning. The problem of enumerating the maximal models of a Horn theory (MaxMod) has been proved to be computationally hard, unless P = NP. To the best of our knowledge, the only algorithm available for it is the one based on a brute-force approach. In this paper, we provide an algorithm for the problem of enumerating the maximal subsets of facts that do not entail a distinguished atomic proposition in a definite Horn theory (MaxNoEntail). We show that MaxMod is polynomially reducible to MaxNoEntail (and vice versa), making it possible to solve also the former problem using the proposed algorithm. Addressing MaxMod via MaxNoEntail opens, inter alia, the possibility of benefiting from the monotonicity of the notion of entailment. (The notion of model does not enjoy such a property.) We also discuss an application of MaxNoEntail to expressiveness issues for modal logics, which reveals the effectiveness of the proposed algorithm.

[1]  Joao Marques-Silva,et al.  Iterative and core-guided MaxSAT solving: A survey and assessment , 2013, Constraints.

[2]  Fahiem Bacchus,et al.  Preprocessing QBF , 2006, CP.

[3]  Sumit Gulwani,et al.  SPEED: Symbolic Complexity Bound Analysis , 2009, CAV.

[4]  Olivier Laurent,et al.  Étude de la polarisation en logique , 2001 .

[5]  Thomas Eiter,et al.  Nonmonotonic Multi-Context Systems: A Flexible Approach for Integrating Heterogeneous Knowledge Sources , 2011, Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning.

[6]  Shuji Tsukiyama,et al.  A New Algorithm for Generating All the Maximal Independent Sets , 1977, SIAM J. Comput..

[7]  Allen Van Gelder Contributions to the Theory of Practical Quantified Boolean Formula Solving , 2012, CP.

[8]  Zhu Zhu,et al.  Optimizing with minimum satisfiability , 2012, Artif. Intell..

[9]  Luís Cruz-Filipe,et al.  Patterns for Interfacing between Logic Programs and Multiple Ontologies , 2013, KEOD.

[10]  Boris Motik,et al.  Reconciling description logics and rules , 2010, JACM.

[11]  Olivier Laurent Polarized Proof-Nets and Lambda µ-Calculus , 1999 .

[12]  Andre Scedrov,et al.  Bounded Linear Logic: A Modular Approach to Polynomial-Time Computability , 1992, Theor. Comput. Sci..

[13]  Stijn Heymans,et al.  Tractable Reasoning with DL-Programs over Datalog-rewritable Description Logics , 2010, ECAI.

[14]  C.-H. Luke Ong,et al.  A Curry-Howard foundation for functional computation with control , 1997, POPL '97.

[15]  Mikolás Janota,et al.  Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence On Computing Minimal Correction Subsets , 2022 .

[16]  Thomas Eiter,et al.  Equilibria in Heterogeneous Nonmonotonic Multi-Context Systems , 2007, AAAI.

[17]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[18]  Zhu Zhu,et al.  Exact MinSAT Solving , 2010, SAT.

[19]  Fahiem Bacchus,et al.  Binary Clause Reasoning in QBF , 2006, SAT.

[20]  Zhu Zhu,et al.  Minimum Satisfiability and Its Applications , 2011, IJCAI.

[21]  Dhiraj K. Pradhan,et al.  NiVER: Non Increasing Variable Elimination Resolution for Preprocessing SAT instances , 2004, SAT.

[22]  Roderick Bloem,et al.  Fault Localization and Correction with QBF , 2007, SAT.

[23]  Hans Tompits,et al.  A Uniform Integration of Higher-Order Reasoning and External Evaluations in Answer-Set Programming , 2005, IJCAI.

[24]  Francesco M. Donini,et al.  AL-log: Integrating Datalog and Description Logics , 1998, Journal of Intelligent Information Systems.

[25]  Inês Lynce,et al.  A branch and bound algorithm for extracting smallest minimal unsatisfiable subformulas , 2008, Constraints.

[26]  Martin Hofmann,et al.  Static determination of quantitative resource usage for higher-order programs , 2010, POPL '10.

[27]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[28]  Larry Joseph Stockmeyer,et al.  The complexity of decision problems in automata theory and logic , 1974 .

[29]  Chu Min Li,et al.  Combining Graph Structure Exploitation and Propositional Reasoning for the Maximum Clique Problem , 2010, 2010 22nd IEEE International Conference on Tools with Artificial Intelligence.

[30]  Antonius Weinzierl,et al.  Managed Multi-Context Systems , 2011, IJCAI.

[31]  Hans Tompits,et al.  Well-Founded Semantics for Description Logic Programs in the Semantic Web , 2004, RuleML.

[32]  Michel Parigot,et al.  Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.

[33]  Ulrich Sch Stratified Bounded Affine Logic for Logarithmic Space , 2007 .

[34]  Hans Tompits,et al.  Combining answer set programming with description logics for the Semantic Web , 2004, Artif. Intell..

[35]  Dirk Pattinson,et al.  PSPACE Bounds for Rank-1 Modal Logics , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[36]  Luís Cruz-Filipe,et al.  Viewing dl-programs as multi-context systems , 2013 .

[37]  Jean-Yves Girard,et al.  A new constructive logic: classic logic , 1991, Mathematical Structures in Computer Science.

[38]  Jean-Yves Girard Light Linear Logic , 1994, LCC.

[39]  Joao Marques-Silva,et al.  MaxSAT-Based MCS Enumeration , 2012, Haifa Verification Conference.

[40]  Armin Biere,et al.  Managing SAT inconsistencies with HUMUS , 2012, VaMoS '12.

[41]  Yves Lafont,et al.  Soft linear logic and polynomial time , 2004, Theor. Comput. Sci..

[42]  Timothy G. Griffin,et al.  A formulae-as-type notion of control , 1989, POPL '90.

[43]  Karem A. Sakallah,et al.  Algorithms for Computing Minimal Unsatisfiable Subsets of Constraints , 2007, Journal of Automated Reasoning.

[44]  Madhav V. Marathe,et al.  On Approximation Algorithms for the Minimum Satisfiability Problem , 1996, Inf. Process. Lett..

[45]  Joao Marques-Silva,et al.  Improvements to Core-Guided Binary Search for MaxSAT , 2012, SAT.

[46]  Luís Cruz-Filipe,et al.  Achieving tightness in dl-programs , 2012 .