ORIGIN: metal creation and evolution from the cosmic dawn

ORIGIN is a proposal for the M3 mission call of ESA aimed at the study of metal creation from the epoch of cosmic dawn. Using high-spectral resolution in the soft X-ray band, ORIGIN will be able to identify the physical conditions of all abundant elements between C and Ni to red-shifts of z = 10, and beyond. The mission will answer questions such as: When were the first metals created? How does the cosmic metal content evolve? Where do most of the metals reside in the Universe? What is the role of metals in structure formation and evolution? To reach out to the early Universe ORIGIN will use Gamma-Ray Bursts (GRBs) to study their local environments in their host galaxies. This requires the capability to slew the satellite in less than a minute to the GRB location. By studying the chemical composition and properties of clusters of galaxies we can extend the range of exploration to lower redshifts (z ∼0.2). For this task we need a high-resolution spectral imaging instrument with a large field of view. Using the same instrument, we can also study the so far only partially detected baryons in the Warm-Hot Intergalactic Medium (WHIM). The less dense part of the WHIM will be studied using absorption lines at low redshift in the spectra for GRBs. The ORIGIN mission includes a Transient Event Detector (coded mask with a sensitivity of 0.4 photon/cm2/s in 10 s in the 5–150 keV band) to identify and localize 2000 GRBs over a five year mission, of which ∼65 GRBs have a redshift >7. The Cryogenic Imaging Spectrometer, with a spectral resolution of 2.5 eV, a field of view of 30 arcmin and large effective area below 1 keV has the sensitivity to study clusters up to a significant fraction of the virial radius and to map the denser parts of the WHIM (factor 30 higher than achievable with current instruments). The payload is complemented by a Burst InfraRed Telescope to enable onboard red-shift determination of GRBs (hence securing proper follow up of high-z bursts) and also probes the mildly ionized state of the gas. Fast repointing is achieved by a dedicated Controlled Momentum Gyro and a low background is achieved by the selected low Earth orbit.

K. Irwin | P. Giommi | Luigi Piro | Y. Ezoe | D. Spiga | S. Barthelmy | Jelle S. Kaastra | J. Schaye | P. Conconi | X. Barcons | L. Amati | S. Campana | G. Cusumano | N. Gehrels | O. Godet | I. Kuvvetli | R. Salvaterra | M. I. Andersen | L. Ferrari | R. Willingale | K. Shinozaki | M. Tsujimoto | M. Barbera | S. Borgani | E. Caroli | F. Christensen | L. Colasanti | S. Ettori | M. Galeazzi | B. Gendre | F. Haardt | A. Holland | C. Macculi | D. McCammon | K. Mitsuda | S. Molendi | L. Moscardini | R. Mushotzky | J. Osborne | T. Ponman | A. Rasmussen | M. Roncarelli | O. Ruchayskiy | M. Shaposhnikov | E. Ursino | M. Viel | N. White | R. Wijers | N. Yamasaki | Y. Tawara | E. Quadrini | Takaya Ohashi | E. Pointecouteau | A. Furuzawa | R. Content | N. Tanvir | G. Rauw | P. Predehl | R. Fujimoto | M. Gilfanov | E. Perinati | C. Budtz-Jorgensen | L. Natalucci | P. Ubertini | S. Savaglio | Y. Suto | G. Ghirlanda | G. Ghisellini | R. Kelley | C. Kilbourne | G. Branduardi-Raymont | S. Paltani | F. Gatti | S. Bandler | J. Grindlay | Y. Takei | Y. Ishisaki | D. Watson | R. Maiolino | S. Zane | Dieter H. Hartmann | J. Hjorth | I. Hepburn | R. Sharples | P. Rosati | M. Arnaud | J. Ullom | S. Basso | M. Tashiro | A. Corsi | E. Costantini | S. Basa | P. Friedrich | E. Troja | T. Mineo | M. Boer | P. Mazzotta | P. O’Brien | S. Sciortino | R. Mignani | F. Paerels | K. Yoshikawa | M. Ceballos | A. Hornstrup | N. Kawai | M. Weisskopf | E. Branchini | N. Butler | M. Cocchi | K. Pedersen | R. Cole | H. Hoekstra | K. Pedersen | S. Paltani | L. Moscardini | S. Borgani | E. Branchini | A. Holland | M. Viel | A. Boyarsky | O. Ruchayskiy | N. Gehrels | S. Barthelmy | J. Hjorth | C. Kouveliotou | N. Tanvir | D. Watson | P. Rosati | K. Irwin | M. Boer | A. Corsi | P. Giommi | B. Gendre | P. Evans | P. O’Brien | J. Osborne | R. Maiolino | N. Butler | E. Caroli | L. Natalucci | N. Kawai | H. Kawahara | T. Kitayama | E. Troja | S. Basa | R. Sharples | F. Christensen | R. Willingale | S. Basso | D. Spiga | M. Weisskopf | S. Sciortino | F. Paerels | P. Korte | P. Conconi | R. Mignani | M. Arnaud | A. Rosa | A. Hornstrup | P. Mazzotta | E. Pointecouteau | R. Sunyaev | J. Schaye | T. Tsuru | Y. Suto | J. Atteia | K. Shinozaki | R. Fujimoto | K. Mitsuda | N. Yamasaki | Y. Takei | M. Tsujimoto | T. Ohashi | Y. Ishisaki | Y. Ezoe | R. Kelley | C. Kilbourne | D. McCammon | J. Kaastra | D. Hartmann | A. Comastri | F. Gatti | S. Bandler | M. Galeazzi | R. Mushotzky | J. Ullom | R. Salvaterra | G. Ghisellini | W. Hermsen | P. Jonker | M. Gilfanov | M. Pasquale | R. Content | T. Ponman | N. Werner | M. Shaposhnikov | J. Zand | S. Molendi | G. Cusumano | L. Piro | R. Wijers | M. Andersen | S. Campana | G. Ghirlanda | O. Godet | N. White | L. Amati | J. Grindlay | A. Horst | H. Röttgering | E. Costantini | J. Plaa | A. Furuzawa | A. Hoshino | K. Matsushita | T. Tamura | M. Tashiro | Y. Tawara | E. Ursino | I. Hepburn | R. Hartog | C. Budtz-Jørgensen | I. Kuvvetli | S. Savaglio | P. Ubertini | X. Barcons | E. Churazov | S. Cosimo | S. Zane | E. Quadrini | F. Nicastro | G. Brunetti | F. Haardt | M. Santo | P. Predehl | T. Mineo | M. Cocchi | M. Page | S. Wachter | G. Rauw | S. Ettori | F. Verbunt | M. Girardi | M. Roncarelli | G. Branduardi‐Raymont | E. Perinati | A. Kusenko | P. Friedrich | D. Burrows | M. Barbera | M. Ceballos | C. Macculi | M. Méndez | L. Colasanti | M. Guedel | J. Herder | T. Tamura | R. Sunyaev | A. Comastri | P. Jonker | A. Kusenko | Jan-Willem Herder | Chryssa Kouveliotou | S. Wachter | E. Churazov | M. Page | H. Hoekstra | L. Ferrari | H. Röttgering | T. Tsuru | R. Cole | N. Werner | K. Matsushita | F. Nicastro | M. Girardi | R. Hartog | M. Guedel | K. Sato | K. Sato | F. Voort | A. Rasmussen | M. Méndez | W. Hermsen | F. Verbunt | A. Hoshino | G. Brunetti | M. Hesse | A. Boyarsky | S. Sasaki | A. Rosa | T. Kitayama | P. Evans | H. Kawahara | J. -L. Attéia | D. Burrows | J. Plaa | M. Santo | S. Cosimo | M. Pasquale | R. Doriese | H. Finger | T. Figueroa-Feliciano | J. Fynbo | A. Horst | J. Zand | P. Korte | M. Labanti | M. Mas Hesse | S. Porter | S. Sasaki | F. Voort | J. Fynbo | R. Doriese | M. Labanti | S. Porter | K. Yoshikawa | H. Finger | T. Figueroa-Feliciano | P. Evans

[1]  P. Schady,et al.  The nature of "dark" gamma-ray bursts , 2010, 1011.0618.

[2]  S. E. Woosley,et al.  How Massive Single Stars End Their Life , 2003 .

[3]  Explosive Yields of Massive Stars from Z = 0 to Z = Z? , 2004, astro-ph/0402625.

[4]  A. Loeb,et al.  First Light In The Universe , 2008 .

[5]  Paul T. O'Brien,et al.  Gamma-Ray Bursts: Restarting the Engine , 2005 .

[6]  Stephen J. Smith,et al.  Multiplexed readout of uniform arrays of TES x-ray microcalorimeters suitable for Constellation-X , 2008, Astronomical Telescopes + Instrumentation.

[7]  Vikhlinin Kravtsov A New Robust Low-scatter X-ray Mass Indicator for Clusters of Galaxies , 2006 .

[8]  Joel R. Primack,et al.  Diffuse Extragalactic Background Radiation , 2009 .

[9]  L. Moscardini,et al.  Studying the WHIM with Gamma Ray Bursts , 2009, 0903.1861.

[10]  G. Tagliaferri,et al.  Gamma-ray bursts from the early Universe : predictions for present-day and future instruments , 2007, 0710.4280.

[11]  J. Kaastra,et al.  XMM-Newton spectroscopy of the cluster of galaxies 2A 0335+096 , 2005, astro-ph/0512401.

[12]  D.,et al.  ROSAT SURVEY DIFFUSE X-RAY BACKGROUND MAPS . II . , 2022 .

[13]  M. J. Page,et al.  Further calibration of the Swift ultraviolet/optical telescope , 2010, 1004.2448.

[14]  Volker Bromm,et al.  GRB Cosmology: Probing the Early Universe , 2007 .

[15]  A. J. Levan,et al.  THE AFTERGLOWS OF SWIFT-ERA GAMMA-RAY BURSTS. I. COMPARING PRE-SWIFT AND SWIFT-ERA LONG/SOFT (TYPE II) GRB OPTICAL AFTERGLOWS , 2007, 0712.2186.

[16]  AMAZE - I. The evolution of the mass–metallicity relation at z $>$ 3 , 2008, 0806.2410.

[17]  A. Diaferio,et al.  Metal Enrichment Processes , 2008, 0801.1061.

[18]  S. H. Moseley,et al.  A High Spectral Resolution Observation of the Soft X-Ray Diffuse Background with Thermal Detectors , 2000, astro-ph/0205012.

[19]  Dan McCammon,et al.  ROSAT Survey Diffuse X-Ray Background Maps. II. , 1997 .

[20]  Sandra Savaglio,et al.  The missing gas problem in GRB host galaxies: evidence for a highly ionised component , 2011 .

[21]  Luigi Piro,et al.  STUDYING THE WARM-HOT INTERGALACTIC MEDIUM IN EMISSION , 2010, Monthly Notices of the Royal Astronomical Society.

[22]  B. Keating,et al.  Observational Constraints on Cosmic Reionization , 2006 .

[23]  L. Moscardini,et al.  Expected properties of the Two-Point Autocorrelation Function of the IGM , 2010, 1009.5519.

[24]  Luigi Piro,et al.  STUDYING THE WARM HOT INTERGALACTIC MEDIUM WITH GAMMA-RAY BURSTS , 2009 .

[25]  E. Linder A Cosmic Vision Beyond Einstein , 2008, 0810.1754.

[26]  M. Feroci,et al.  Design of a CZT gamma-camera for GRB and fast transient follow-up: a wide-field-monitor for the EDGE mission , 2007, SPIE Optical Engineering + Applications.

[27]  P. Meszaros Gamma-ray bursts , 1998 .

[28]  R. Cen,et al.  Where Are the Baryons? II. Feedback Effects , 2005, astro-ph/0601008.

[29]  J. P. U. Fynbo,et al.  A Mean Redshift of 2.8 for Swift gamma - ray bursts , 2005 .

[30]  A. Zezas,et al.  Chandra Discovery of a Tree in the X-Ray Forest toward PKS 2155–304: The Local Filament? , 2002 .

[31]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[32]  L. A. Antonelli,et al.  THE AFTERGLOWS OF SWIFT-ERA GAMMA-RAY BURSTS. II. TYPE I GRB VERSUS TYPE II GRB OPTICAL AFTERGLOWS , 2008, 0804.1959.

[33]  Volker Springel,et al.  Inferring the dark matter power spectrum from the Lyman α forest in high-resolution QSO absorption spectra , 2004, astro-ph/0404600.

[34]  Carlos S. Frenk,et al.  The large-scale structure of the Universe , 2006, Nature.

[35]  J. Lesgourgues,et al.  Realistic sterile neutrino dark matter with keV mass does not contradict cosmological bounds. , 2008, Physical review letters.

[36]  Didier Barret,et al.  The Dynamic X-ray Sky of the Local Universe , 2009, 0902.3674.

[37]  S. Woosley,et al.  NUCLEOSYNTHESIS AND EVOLUTION OF MASSIVE METAL-FREE STARS , 2008, 0803.3161.

[38]  R. Salvaterra,et al.  Testing reionization with gamma-ray burst absorption spectra , 2007, 0710.1303.

[39]  Low-mass relics of early star formation , 2003, Nature.

[40]  Nathaniel R. Butler,et al.  THE COSMIC RATE, LUMINOSITY FUNCTION, AND INTRINSIC CORRELATIONS OF LONG GAMMA-RAY BURSTS , 2009, 0910.3341.

[41]  E. Figueroa-Feliciano,et al.  Development of Position-Sensitive Transition-Edge Sensor X-Ray Detectors , 2009, IEEE Transactions on Applied Superconductivity.

[42]  Alan H. Gabriel,et al.  Dielectronic Satellite Spectra for Highly-Charged Helium-Like Ion Lines , 1972 .

[43]  J. Stadel,et al.  Clumps and streams in the local dark matter distribution , 2008, Nature.

[44]  Takashi Hattori,et al.  GRB 050904: Subaru optical spectroscopy. , 2005 .

[45]  P. Giommi,et al.  GRB 090423 at a redshift of z ≈ 8.1 , 2009, Nature.

[46]  STScI,et al.  Dust Depletion and Extinction in a Gamma-Ray Burst Afterglow , 2004 .

[47]  F. Paerels,et al.  Equilibration Processes in the Warm-Hot Intergalactic Medium , 2008, 0801.1008.

[48]  L. A. Antonelli,et al.  Evidence for intrinsic absorption in the Swift X-ray afterglows , 2005, astro-ph/0511750.

[49]  Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution , 2006, astro-ph/0605725.

[50]  V. Springel,et al.  X‐ray properties of galaxy clusters and groups from a cosmological hydrodynamical simulation , 2004 .

[51]  A. Gabriel,et al.  Dielectronic satellite spectra for highly charged helium-like ions – IV. Iron satellite lines as a measure of non-thermal electron energy distributions , 1979 .

[52]  R. Wechsler,et al.  CONNECTING REIONIZATION TO THE LOCAL UNIVERSE , 2008, 0812.3405.

[53]  D. Zaritsky,et al.  A Census of Baryons in Galaxy Clusters and Groups , 2007, Proceedings of the International Astronomical Union.

[54]  F. Paerels,et al.  Future Instrumentation for the Study of the Warm-Hot Intergalactic Medium , 2008, 0801.1064.

[55]  A. Boyarsky,et al.  The Role of Sterile Neutrinos in Cosmology and Astrophysics , 2008, 0901.0011.

[56]  Cambridge,et al.  A Universal Stellar Initial Mass Function? A critical look at variations in extreme environments , 2010, 1001.2965.

[57]  J. Kaastra,et al.  Constraining supernova models using the hot gas in clusters of galaxies , 2007, astro-ph/0701553.