Scrape-off layer power fall-off length from turbulence simulations of ASDEX Upgrade L-mode

The scrape-off layer (SOL) power fall-off length, λ q , for parameters relevant to ASDEX Upgrade (AUG) L-mode discharges is examined by means of numerical simulations. The simulation data is acquired using synthetic probe data from turbulence simulations, which gives a high temporal resolution on the full density and pressure fields, required for an accurate evaluation of λ q due to the strongly intermittent signals in the SOL. Electron conduction is found to dominate the parallel heat flux close to the separatrix, while ion convection dominates in the far SOL. Good agreement is found with the experimental scaling for AUG L-mode Sieglin et al (2016 Plasma Phys. Control. Fusion 58 055015), where λ q is found to scale almost linearly with the safety factor, q, and to be weakly dependent on the power across the last-closed flux surface (LCFS), P. However, P depends on a wide range of parameters. In this paper we trace this dependence and the resulting fit of λ q reveals a scaling proportional to the inverse square root of the electron temperature at the LCFS, , and a linear dependence on q.

[1]  R. Mitteau,et al.  Impact of a narrow limiter SOL heat flux channel on the ITER first wall panel shaping , 2015 .

[2]  J. Contributors,et al.  Scaling of the tokamak near the scrape-off layer H-mode power width and implications for ITER , 2013 .

[3]  F. Halpern,et al.  Velocity shear, turbulent saturation, and steep plasma gradients in the scrape-off layer of inner-wall limited tokamaks , 2016, 1606.08564.

[4]  J. Juul Rasmussen,et al.  Numerical simulations of blobs with ion dynamics , 2017 .

[5]  T. Eich,et al.  Change of the scrape-off layer power width with the toroidal B-field direction in ASDEX upgrade , 2015 .

[6]  Guido Ciraolo,et al.  The TOKAM3X code for edge turbulence fluid simulations of tokamak plasmas in versatile magnetic geometries , 2016, J. Comput. Phys..

[7]  W. Fundamenski Parallel heat flux limits in the tokamak scrape-off layer , 2005 .

[8]  J. Decker,et al.  Propagation of the lower hybrid wave in a density fluctuating scrape-off layer (SOL) , 2015 .

[9]  T. Eich,et al.  Inter-ELM power decay length for JET and ASDEX upgrade: measurement and comparison with heuristic drift-based model. , 2011, Physical review letters.

[10]  T. Eich,et al.  Density Dependence of SOL PowerWidth in ASDEX Upgrade L-Mode , 2017 .

[11]  Volker Naulin,et al.  Collisional transport across the magnetic field in drift-fluid models , 2015 .

[12]  J. Adamek,et al.  Multi-machine scaling of the main SOL parallel heat flux width in tokamak limiter plasmas , 2016 .

[13]  R. A. Pitts,et al.  Dissipative processes in interchange driven scrape-off layer turbulence , 2007 .

[14]  D. Whyte,et al.  The relation between upstream density and temperature widths in the scrape-off layer and the power width in an attached divertor , 2010 .

[15]  T. Eich,et al.  Study of near scrape-off layer (SOL) temperature and density gradient lengths with Thomson scattering , 2015 .

[16]  William B. Thompson Transport Processes in the Plasma , 1960 .

[17]  T. Eich,et al.  Investigation of scrape-off layer and divertor heat transport in ASDEX Upgrade L-mode , 2016 .

[18]  S. Zweben,et al.  Edge turbulence measurements in toroidal fusion devices , 2007 .

[19]  J. Contributors,et al.  Correlation of the tokamak H-mode density limit with ballooning stability at the separatrix , 2018 .

[20]  Fabio Riva,et al.  The GBS code for tokamak scrape-off layer simulations , 2016, J. Comput. Phys..

[21]  D. Russell,et al.  Reduced model simulations of the scrape-off-layer heat-flux width and comparison with experiment , 2011 .

[22]  D. Russell,et al.  Turbulent transport regimes and the scrape-off layer heat flux width , 2015 .

[23]  Fabio Riva,et al.  Multi-code analysis of scrape-off layer filament dynamics in MAST , 2016 .

[24]  Ben Dudson,et al.  Hermes: global plasma edge fluid turbulence simulations , 2016, 1609.03360.

[25]  F. Halpern,et al.  A theoretical interpretation of the main scrape-off layer heat-flux width scaling for tokamak inner-wall limited plasmas , 2016 .

[26]  V. Naulin,et al.  Numerical scalings of the decay lengths in the scrape-off layer , 2013 .

[27]  F. Halpern,et al.  Plasma Turbulence in the Scrape-off Layer of the ISTTOK Tokamak , 2016, 1606.09538.

[28]  Jet Efda Contributors,et al.  Characterization of scrape-off layer transport in JET limiter plasmas , 2013 .

[29]  J. Madsen,et al.  Blob dynamics in the TORPEX experiment: a multi-code validation , 2016 .