A new optical technique based on real time holographic interferometry in true colors has been implemented around the transonic wind tunnel of the ONERA-Lille center to analyze 2D unsteady wake flows. Tests realized in color interferometry, real time and double exposure, use simultaneously three wavelengths of a continuous waves laser (argon and krypton mixed) and holograms are recorded on silver-halide single-layer panchromatic Slavich PFG03c plates. The very principle of real-time true color holographic interferometry uses three primary wavelengths (red, green and blue) to record, under no-flow conditions, the interference among the three measurement beams and the three reference beams simultaneously on a single reference hologram. After the holographic plate is developed, it is placed on the test setup again in the position it occupied during exposure and the hologram is illuminated again by the three reference beams and three measurement beams. A flat, uniform color can then be observed behind the hologram. So a horizontal, vertical, or even circular fringe pattern can be formed and the achromatic central fringe can be made out very clearly. The single color is used to determine the path difference zero on the interferograms. The flow studied was the unsteady flow downstream of a cylinder placed crosswise in the test section. A sequence of hundred interferograms was recorded on the flow around the cylinder at Mach 0.37. The vortex formation and dissipation phases can be seen very clearly, along with the fringe beat to either side of the cylinder.
[1]
J. Desse,et al.
Instantaneous density measurement in two-dimensional gas flow by high speed differential interferometry
,
1990
.
[2]
Karl A. Stetson,et al.
Interferometric Vibration Analysis by Wavefront Reconstruction
,
1965
.
[3]
J. Desse,et al.
Three-color differential interferometry.
,
1997,
Applied optics.
[4]
Jean-Michel Desse,et al.
Real-time color holographic interferometry.
,
2002,
Applied optics.
[5]
Karl A. Stetson,et al.
Interferometric Hologram Evaluation and Real-Time Vibration Analysis of Diffuse Objects
,
1965
.
[6]
J. M. Desse.
Recording and processing of interferograms by spectral characterization of the interferometric setup
,
1997
.