The central path visits all the vertices of the Klee–Minty cube
暂无分享,去创建一个
Tamás Terlaky | Antoine Deza | Eissa Nematollahi | M. Reza Peyghami | T. Terlaky | A. Deza | M. Peyghami | E. Nematollahi | Reza Peyghami
[1] G. Sonnevend. An "analytical centre" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming , 1986 .
[2] Shuzhong Zhang,et al. Pivot rules for linear programming: A survey on recent theoretical developments , 1993, Ann. Oper. Res..
[3] L. G. H. Cijan. A polynomial algorithm in linear programming , 1979 .
[4] N. Megiddo. Pathways to the optimal set in linear programming , 1989 .
[5] Narendra Karmarkar,et al. A new polynomial-time algorithm for linear programming , 1984, Comb..
[6] L. Khachiyan. Polynomial algorithms in linear programming , 1980 .
[7] Jean-Philippe Vial,et al. Theory and algorithms for linear optimization - an interior point approach , 1998, Wiley-Interscience series in discrete mathematics and optimization.
[8] Tamás Terlaky,et al. How good are interior point methods? Klee–Minty cubes tighten iteration-complexity bounds , 2008, Math. Program..
[9] Yinyu Ye,et al. Interior point algorithms: theory and analysis , 1997 .
[10] O. H. Brownlee,et al. ACTIVITY ANALYSIS OF PRODUCTION AND ALLOCATION , 1952 .
[11] V. Klee,et al. HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .
[12] Y. Ye,et al. A Lower Bound on the Number of Iterations of Long-Step and Polynomial Interior-Point Linear Programming Algorithms , 1994 .
[13] Stephen J. Wright. Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.
[14] Michael J. Todd,et al. A lower bound on the number of iterations of long-step primal-dual linear programming algorithms , 1996, Ann. Oper. Res..