On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs

Fan-planar graphs were recently introduced as a generalization of 1-planar graphs. A graph is fan-planar if it can be embedded in the plane, such that each edge that is crossed more than once, is crossed by a bundle of two or more edges incident to a common vertex. A graph is outer-fan-planar if it has a fan-planar embedding in which every vertex is on the outer face. If, in addition, the insertion of an edge destroys its outer-fan-planarity, then it is maximal outer-fan-planar. In this paper, we present a linear-time algorithm to test whether a given graph is maximal outer-fan-planar. The algorithm can also be employed to produce an outer-fan-planar embedding, if one exists. On the negative side, we show that testing fan-planarity of a graph is NP-complete, for the case where the rotation system (i.e., the cyclic order of the edges around each vertex) is given.

[1]  Ioannis G. Tollis,et al.  Fan-planarity: Properties and complexity , 2014, Theor. Comput. Sci..

[2]  Giuseppe Liotta,et al.  Checking the convexity of polytopes and the planarity of subdivisions , 1998, Comput. Geom..

[3]  Giuseppe Liotta,et al.  Fáry's Theorem for 1-Planar Graphs , 2012, COCOON.

[4]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[5]  Tomás Madaras,et al.  The structure of 1-planar graphs , 2007, Discret. Math..

[6]  Giuseppe Liotta,et al.  A Linear-Time Algorithm for Testing Outer-1-Planarity , 2013, Algorithmica.

[7]  Alexander Grigoriev,et al.  Algorithms for Graphs Embeddable with Few Crossings per Edge , 2005, Algorithmica.

[8]  Eyal Ackerman,et al.  On the Maximum Number of Edges in Topological Graphs with no Four Pairwise Crossing Edges , 2006, SCG '06.

[9]  V. Bryant,et al.  Straight line representations of planar graphs. , 1989 .

[10]  Giuseppe Liotta,et al.  A linear time algorithm for testing maximal 1-planarity of graphs with a rotation system , 2013, Theor. Comput. Sci..

[11]  Christian Bachmaier,et al.  Recognizing Outer 1-Planar Graphs in Linear Time , 2013, GD.

[12]  János Pach,et al.  Relaxing Planarity for Topological Graphs , 2002, JCDCG.

[13]  K. Wagner,et al.  Über 1-optimale Graphen , 1984 .

[14]  Ioannis G. Tollis,et al.  Fan-planarity: Properties and complexity , 2015, Theor. Comput. Sci..

[15]  Giuseppe Liotta,et al.  Right angle crossing graphs and 1-planarity , 2013, Discret. Appl. Math..

[16]  Otfried Cheong,et al.  On the Number of Edges of Fan-Crossing Free Graphs , 2013, Algorithmica.

[17]  Bojan Mohar,et al.  Adding One Edge to Planar Graphs Makes Crossing Number and 1-Planarity Hard , 2012, SIAM J. Comput..

[18]  G. Ringel Ein Sechsfarbenproblem auf der Kugel , 1965 .

[19]  Michael A. Bekos,et al.  The Straight-Line RAC Drawing Problem is NP-Hard , 2010, J. Graph Algorithms Appl..

[20]  Michael A. Bekos,et al.  On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs , 2014, Graph Drawing.

[21]  János Pach,et al.  The Number of Edges in k-Quasi-planar Graphs , 2011, SIAM J. Discret. Math..

[22]  Petra Mutzel,et al.  A Linear Time Implementation of SPQR-Trees , 2000, GD.

[23]  János Pach,et al.  Graphs drawn with few crossings per edge , 1997, Comb..

[24]  Michael Kaufmann,et al.  The Density of Fan-Planar Graphs , 2014, Electron. J. Comb..

[25]  Helen C. Purchase,et al.  Effective information visualisation: a study of graph drawing aesthetics and algorithms , 2000, Interact. Comput..

[26]  David G. Kirkpatrick Establishing order in planar subdivisions , 1987, SCG '87.

[27]  Carsten Thomassen,et al.  Rectilinear drawings of graphs , 1988, J. Graph Theory.

[28]  David S. Johnson,et al.  Crossing Number is NP-Complete , 1983 .

[29]  Peter Eades,et al.  Every outer-1-Plane Graph has a Right Angle Crossing Drawing , 2012, Int. J. Comput. Geom. Appl..

[30]  Walter Didimo,et al.  Drawing graphs with right angle crossings , 2009, Theor. Comput. Sci..

[31]  Micha Sharir,et al.  Quasi-planar graphs have a linear number of edges , 1995, GD.

[32]  Vladimir P. Korzhik,et al.  Minimal Obstructions for 1‐Immersions and Hardness of 1‐Planarity Testing , 2009, J. Graph Theory.