On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs
暂无分享,去创建一个
Michael A. Bekos | Michael Kaufmann | Luca Grilli | Seok-Hee Hong | Sabine Cornelsen | Sabine Cornelsen | M. Kaufmann | L. Grilli | M. Bekos | Seok-Hee Hong
[1] Ioannis G. Tollis,et al. Fan-planarity: Properties and complexity , 2014, Theor. Comput. Sci..
[2] Giuseppe Liotta,et al. Checking the convexity of polytopes and the planarity of subdivisions , 1998, Comput. Geom..
[3] Giuseppe Liotta,et al. Fáry's Theorem for 1-Planar Graphs , 2012, COCOON.
[4] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[5] Tomás Madaras,et al. The structure of 1-planar graphs , 2007, Discret. Math..
[6] Giuseppe Liotta,et al. A Linear-Time Algorithm for Testing Outer-1-Planarity , 2013, Algorithmica.
[7] Alexander Grigoriev,et al. Algorithms for Graphs Embeddable with Few Crossings per Edge , 2005, Algorithmica.
[8] Eyal Ackerman,et al. On the Maximum Number of Edges in Topological Graphs with no Four Pairwise Crossing Edges , 2006, SCG '06.
[9] V. Bryant,et al. Straight line representations of planar graphs. , 1989 .
[10] Giuseppe Liotta,et al. A linear time algorithm for testing maximal 1-planarity of graphs with a rotation system , 2013, Theor. Comput. Sci..
[11] Christian Bachmaier,et al. Recognizing Outer 1-Planar Graphs in Linear Time , 2013, GD.
[12] János Pach,et al. Relaxing Planarity for Topological Graphs , 2002, JCDCG.
[13] K. Wagner,et al. Über 1-optimale Graphen , 1984 .
[14] Ioannis G. Tollis,et al. Fan-planarity: Properties and complexity , 2015, Theor. Comput. Sci..
[15] Giuseppe Liotta,et al. Right angle crossing graphs and 1-planarity , 2013, Discret. Appl. Math..
[16] Otfried Cheong,et al. On the Number of Edges of Fan-Crossing Free Graphs , 2013, Algorithmica.
[17] Bojan Mohar,et al. Adding One Edge to Planar Graphs Makes Crossing Number and 1-Planarity Hard , 2012, SIAM J. Comput..
[18] G. Ringel. Ein Sechsfarbenproblem auf der Kugel , 1965 .
[19] Michael A. Bekos,et al. The Straight-Line RAC Drawing Problem is NP-Hard , 2010, J. Graph Algorithms Appl..
[20] Michael A. Bekos,et al. On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs , 2014, Graph Drawing.
[21] János Pach,et al. The Number of Edges in k-Quasi-planar Graphs , 2011, SIAM J. Discret. Math..
[22] Petra Mutzel,et al. A Linear Time Implementation of SPQR-Trees , 2000, GD.
[23] János Pach,et al. Graphs drawn with few crossings per edge , 1997, Comb..
[24] Michael Kaufmann,et al. The Density of Fan-Planar Graphs , 2014, Electron. J. Comb..
[25] Helen C. Purchase,et al. Effective information visualisation: a study of graph drawing aesthetics and algorithms , 2000, Interact. Comput..
[26] David G. Kirkpatrick. Establishing order in planar subdivisions , 1987, SCG '87.
[27] Carsten Thomassen,et al. Rectilinear drawings of graphs , 1988, J. Graph Theory.
[28] David S. Johnson,et al. Crossing Number is NP-Complete , 1983 .
[29] Peter Eades,et al. Every outer-1-Plane Graph has a Right Angle Crossing Drawing , 2012, Int. J. Comput. Geom. Appl..
[30] Walter Didimo,et al. Drawing graphs with right angle crossings , 2009, Theor. Comput. Sci..
[31] Micha Sharir,et al. Quasi-planar graphs have a linear number of edges , 1995, GD.
[32] Vladimir P. Korzhik,et al. Minimal Obstructions for 1‐Immersions and Hardness of 1‐Planarity Testing , 2009, J. Graph Theory.