Système de tri couleur par capteur flou Color sorting system by fuzzy sensor

and key words This article presents a color recognition system formalized under the fuzzy sensor concept. The main objective is to improve the color classification of wooden boards. Our study relates the development of an industrial vision system allowing the recognition of gradual colors. This context imposes a strong reliability constraint, because the currently used sensors are not always enough robust. Then, we are interested in techniques which improve the taking into account of the physical measure imprecision and the uncertainty concerning the definition of the wood color by a Human, the color classes being always neither identified nor separated. Moreover, the different users can have different perceptions of them. Besides, the vision system must be easy to tune. To carry out such a system, we propose to base the fuzzy sensor on a classification method with fuzzy linguistic rules (Fuzzy Reasoning Classifier) which main advantages reside in its generalization capacity from small training data sets and in the interpretability of its rule set. The obtained results show the efficiency of our intelligent sensor. Fuzzy sensor, Color measurement, Pattern recognition, Fuzzy rules, Image processing. traitement du signal 2008_volume 25_numero 5 381

[1]  Oliver Perez Oramas Contribution à une méthodologie d'intégration de connaissances pour le traitement d'images : application à la détection de contours par règles linguistiques floues , 2000 .

[2]  F. Herrera,et al.  A proposal on reasoning methods in fuzzy rule-based classification systems , 1999 .

[3]  Ronald Fagin,et al.  Combining Fuzzy Information from Multiple Systems , 1999, J. Comput. Syst. Sci..

[4]  Laurent Foulloy,et al.  The aggregation of complementary information via fuzzy sensors , 1996 .

[5]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[6]  Jung-Hsien Chiang,et al.  Hierarchically SVM classification based on support vector clustering method and its application to document categorization , 2007, Expert Syst. Appl..

[7]  Michael R. Berthold,et al.  Mixed fuzzy rule formation , 2003, Int. J. Approx. Reason..

[8]  Laurent Wendling,et al.  Improving Fuzzy Rule Classifier by Extracting Suitable Features From Capacities With Respect to the Choquet Integral , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[9]  Didier Dubois,et al.  On the use of aggregation operations in information fusion processes , 2004, Fuzzy Sets Syst..

[10]  Didier Dubois,et al.  Checking the coherence and redundancy of fuzzy knowledge bases , 1997, IEEE Trans. Fuzzy Syst..

[11]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  L. Maloney,et al.  Color constancy: a method for recovering surface spectral reflectance. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[13]  Hideo Tanaka,et al.  Construction of fuzzy classification systems with rectangular fuzzy rules using genetic algorithms , 1994, CVPR 1994.

[14]  Matti Pietikäinen,et al.  Some Aspects of RGB Vision and Its Applications in Industry , 1996, Int. J. Pattern Recognit. Artif. Intell..

[15]  B. Bouchon-Meunier,et al.  La logique floue et ses applications , 1995 .

[16]  J. Mendel Fuzzy logic systems for engineering: a tutorial , 1995, Proc. IEEE.

[17]  D. Mery,et al.  Color measurement in L ¿ a ¿ b ¿ units from RGB digital images , 2006 .

[18]  Hisao Ishibuchi,et al.  A simple but powerful heuristic method for generating fuzzy rules from numerical data , 1997, Fuzzy Sets Syst..

[19]  Hisao Ishibuchi,et al.  Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[20]  Richard W. Conners,et al.  Technology to sort lumber by color and grain for furniture parts , 2000 .

[21]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[22]  Laurent Foulloy,et al.  Fuzzy Linguistic Methods for the Aggregation of Complementary Sensor Information , 1998 .

[23]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[24]  Laurent Foulloy,et al.  Symbolic sensors : one solution to the numerical-symbolic interface , 1991 .

[25]  Patrick Charpentier,et al.  Self-Fuzzification Method according to Typicality Correlation for Classification on tiny Data Sets , 2007, 2007 IEEE International Fuzzy Systems Conference.

[26]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[27]  Laurent Foulloy,et al.  High functionalities for intelligent sensors, application to fuzzy colour sensor , 2001 .

[28]  Philip A. Araman,et al.  Real-time implementation of a color sorting system , 1997, Other Conferences.

[29]  Jesús Alcalá-Fdez,et al.  Genetic learning of accurate and compact fuzzy rule based systems based on the 2-tuples linguistic representation , 2007, Int. J. Approx. Reason..

[30]  Michio Sugeno,et al.  An introductory survey of fuzzy control , 1985, Inf. Sci..

[31]  H. Ishibuchi,et al.  Distributed representation of fuzzy rules and its application to pattern classification , 1992 .

[32]  James S. Albus,et al.  Outline for a theory of intelligence , 1991, IEEE Trans. Syst. Man Cybern..

[33]  Euripides G. M. Petrakis,et al.  A survey on industrial vision systems, applications, tools , 2003, Image Vis. Comput..

[34]  G. Mauris,et al.  A fuzzy approach for the expression of uncertainty in measurement , 2001 .

[35]  Vincent Bombardier,et al.  Contribution of fuzzy reasoning method to knowledge integration in a defect recognition system , 2007, Comput. Ind..

[36]  Didier Dubois,et al.  The three semantics of fuzzy sets , 1997, Fuzzy Sets Syst..

[37]  Allan Hanbury Morphologie Mathématique sur le Cercle Unité, avec applications aux teintes et aux textures orientées. (Mathematical morphology on the unit circle, with applications to hues and to oriented textures) , 2002 .

[38]  Henri Prade,et al.  What are fuzzy rules and how to use them , 1996, Fuzzy Sets Syst..

[39]  Seref Sagiroglu,et al.  Training multilayered perceptrons for pattern recognition: a comparative study of four training algorithms , 2001 .

[40]  Christophe Marsala,et al.  Fuzzy decision trees to help flexible querying , 2000, Kybernetika.