A family of supermodular Nash mechanisms implementing Lindahl allocations

Summary. We present a family of mechanisms which implement Lindahl allocations in Nash equilibrium. With quasilinear utility functions this family of mechanisms are supermodular games, which implies that they converge to Nash equilibrium under a wide class of learning dynamics.

[1]  Paul R. Milgrom,et al.  Rationalizability, Learning, and Equilibrium in Games with Strategic Complementarities , 1990 .

[2]  J. Kagel,et al.  Handbook of Experimental Economics , 1997 .

[3]  T. Groves,et al.  Optimal Allocation of Public Goods: A Solution to the 'Free Rider Problem' , 1977 .

[4]  Pierre de Trenqualye Stable implementation of Lindahl allocations , 1989 .

[5]  Mark A Walker,et al.  A Simple Incentive Compatible Scheme for Attaining Lindahl Allocations , 1981 .

[6]  J. Ledyard Public Goods: A Survey of Experimental Research , 1994 .

[7]  Taesung Kim,et al.  A stable Nash mechanism implementing Lindahl allocations for quasi-linear environments , 1993 .

[8]  Antonio Cabrales,et al.  Adaptive Dynamics and the Implementation Problem with Complete Information , 1999 .

[9]  Jerry R. Green,et al.  Characterization of Satisfactory Mechanisms for the Revelation of Preferences for Public Goods , 1977 .

[10]  Paul R. Milgrom,et al.  Adaptive and sophisticated learning in normal form games , 1991 .

[11]  Pierre De Trenqualye Stability of the Groves and Ledyard mechanism , 1988 .

[12]  Bezalel Peleg Double implementation of the Lindahl equilibrium by a continuous mechanism , 1996 .

[13]  Richard T. Boylan,et al.  Fictitious Play: A Statistical Study of Multiple Economic Experiments , 1993 .

[14]  J. Huyck,et al.  Tacit Coordination Games, Strategic Uncertainty, and Coordination Failure , 1990 .

[15]  Matthew O. Jackson,et al.  Implementing a public project and distributing its cost , 1992 .

[16]  Hitoshi Matsushima,et al.  Virtual implementation in iteratively undominated strategies: complete information , 1992 .

[17]  Kenneth J. Arrow,et al.  Stability of the Gradient Process in n-Person Games , 1960 .

[18]  J. Falkinger,et al.  Efficient private provision of public goods by rewarding deviations from average , 1996 .

[19]  Donald M. Topkis,et al.  Minimizing a Submodular Function on a Lattice , 1978, Oper. Res..

[20]  Guoqiang Tian,et al.  Implementation of the Lindahl Correspondence by a Single-Valued, Feasible, and Continuous Mechanism , 1989 .

[21]  Mark A Walker,et al.  Are Groves-Ledyard Equilibria Attainable? , 1983 .

[22]  Fernando Vega-Redondo,et al.  Implementation of Lindahl equilibrium: an integration of the static and dynamic approaches , 1989 .

[23]  Amin H. Amershi,et al.  Studies in Resource Allocation Processes. , 1979 .

[24]  M. El-Gamal,et al.  Are People Bayesian? Uncovering Behavioral Strategies , 1995 .

[25]  Barton L. Lipman,et al.  Provision of Public Goods: Fully Implementing the Core through Private Contributions , 1989 .

[26]  L. Hurwicz Outcome Functions Yielding Walrasian and Lindahl Allocations at Nash Equilibrium Points , 1979 .