Estimating threshold-exceeding probability maps of environmental variables with Markov chain random fields

[1]  Marten Scheffer,et al.  Spatial correlation as leading indicator of catastrophic shifts , 2010, Theoretical Ecology.

[2]  Weidong Li,et al.  Linear interpolation and joint model fitting of experimental transiograms for Markov chain simulation of categorical spatial variables , 2010, Int. J. Geogr. Inf. Sci..

[3]  S. Carpenter,et al.  Early-warning signals for critical transitions , 2009, Nature.

[4]  A. Ellison,et al.  Indicators of regime shifts in ecological systems: what do we need to know and when do we need to know it? , 2009, Ecological applications : a publication of the Ecological Society of America.

[5]  V. Guttal,et al.  Spatial variance and spatial skewness: leading indicators of regime shifts in spatial ecological systems , 2009, Theoretical Ecology.

[6]  Chaosheng Zhang,et al.  Predicting the probability distribution of Pb-increased lands in sewage-irrigated region: A case study in Beijing, China , 2008 .

[7]  Chuanrong Zhang,et al.  Regional‐scale modelling of the spatial distribution of surface and subsurface textural classes in alluvial soils using Markov chain geostatistics , 2008 .

[8]  Chuanrong Zhang,et al.  A comparative study of nonlinear Markov chain models for conditional simulation of multinomial classes from regular samples , 2008 .

[9]  Weidong Li,et al.  Markov Chain Random Fields for Estimation of Categorical Variables , 2007 .

[10]  Chuanrong Zhang,et al.  A random-path markov chain algorithm for simulating categorical soil variables from random point samples , 2007 .

[11]  Weidong Li,et al.  Transiograms for Characterizing Spatial Variability of Soil Classes , 2007 .

[12]  Giuseppe Arbia,et al.  Spatial sampling plans to monitor the 3-D spatial distribution of extremes in soil pollution surveys , 2007, Comput. Stat. Data Anal..

[13]  M. Scheffer,et al.  IMPLICATIONS OF SPATIAL HETEROGENEITY FOR CATASTROPHIC REGIME SHIFTS IN ECOSYSTEMS , 2005 .

[14]  Anthony W. King,et al.  Spatial uncertainty analysis of population models , 2005 .

[15]  Hongjie Wang,et al.  Uncertainty assessment of spatial patterns of soil organic carbon density using sequential indicator simulation, a case study of Hebei province, China. , 2005, Chemosphere.

[16]  Olaf Tietje,et al.  Uncertainty Assessment for Management of Soil Contaminants with Sparse Data , 2004, Environmental management.

[17]  David G. Kinniburgh,et al.  Geostatistical analysis of arsenic concentration in groundwater in Bangladesh using disjunctive kriging , 2003 .

[18]  P. Römkens,et al.  Mapping the probability of exceeding critical thresholds for cadmium concentrations in soils in The Netherlands. , 2002, Journal of environmental quality.

[19]  Pierre Goovaerts,et al.  Geostatistical modelling of uncertainty in soil science , 2001 .

[20]  Pierre Goovaerts,et al.  Evaluating the probability of exceeding a site-specific soil cadmium contamination threshold , 2001 .

[21]  George Christakos,et al.  Modern Spatiotemporal Geostatistics , 2000 .

[22]  V. D. Oliveira,et al.  Bayesian prediction of clipped Gaussian random fields , 2000 .

[23]  Pierre Goovaerts,et al.  Impact of the simulation algorithm, magnitude of ergodic fluctuations and number of realizations on the spaces of uncertainty of flow properties , 1999 .

[24]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[25]  R. Olea Geostatistics for Natural Resources Evaluation By Pierre Goovaerts, Oxford University Press, Applied Geostatistics Series, 1997, 483 p., hardcover, $65 (U.S.), ISBN 0-19-511538-4 , 1999 .

[26]  Peter M. Atkinson,et al.  Geographical information science: geostatistics and uncertainty , 1999 .

[27]  W. W. Stroup,et al.  A Generalized Linear Model Approach to Spatial Data Analysis and Prediction , 1997 .

[28]  J.-P. Dubois,et al.  Assessing the risk of soil contamination in the Swiss Jura using indicator geostatistics , 1997, Environmental and Ecological Statistics.

[29]  Alfred Stein,et al.  Optimization of environmental sampling using interactive GIS. , 1997 .

[30]  G. Matheron,et al.  Disjunctive kriging revisited: Part I , 1986 .

[31]  Andrew R. Solow,et al.  Mapping by simple indicator kriging , 1986 .

[32]  Andre G. Journel,et al.  Conditional Indicator Simulation: Application to a Saskatchewan uranium deposit , 1984 .

[33]  A. Journel Nonparametric estimation of spatial distributions , 1983 .

[34]  P. Switzer,et al.  Estimation of spatial distributions from point sources with application to air pollution measurement. Technical report No. 9 , 1977 .

[35]  Emilio Hernández-García,et al.  Ecological thresholds and regime shifts: approaches to identification. , 2009, Trends in ecology & evolution.

[36]  K. Juang,et al.  Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils. , 2004, Environmental pollution.

[37]  R. M. Lark,et al.  Mapping risk of soil nutrient deficiency or excess by disjunctive and indicator kriging , 2004 .

[38]  Alan B. Anderson,et al.  Spatial uncertainty in prediction of the topographical factor for the revised universal soil loss equation (RUSLE) , 2002 .

[39]  G. Reams,et al.  Predicting the Probability of Stand Disturbance , 1999 .