Structured design of integrated MEMS

MEMS design methodologies in wide use today do not support hierarchical representations suitable for verification-based iterative design. Adoption of a structured design methodology which borrows hierarchy from the electronics design paradigm enables rapid design verification of complex electronic and micromechanical trade-offs inherent in integrated MEMS. A hierarchical MEMS circuit representation is analogous to and compatible with transistor-level circuits for electronics. Design of a capacitive lateral accelerometer illustrates the structured design flow from a system description, to circuit representation, layout and fabrication. Tools for layout synthesis, layout extraction, and verification specifically tailored for MEMS are an integral part of the design flow. The accelerometer is fabricated in a low-cost CMOS micromachining process that is especially suited to rapid prototyping of integrated MEMS.

[1]  S. D. Senturia,et al.  CAD challenges for microsensors, microactuators, and microsystems , 1998, Proc. IEEE.

[2]  John K. Ousterhout,et al.  Corner Stitching: A Data-Structuring Technique for VLSI Layout Tools , 1984, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[3]  Tamal Mukherjee,et al.  Multi-Mode Sensitive Layout Synthesis of Microresonators , 1998 .

[4]  Gabriel M. Rebeiz,et al.  Micromachined devices for wireless communications , 1998, Proc. IEEE.

[5]  Hui Li,et al.  EVOLUTIONARY TECHNIQUES IN MEMS SYNTHESIS , 1998 .

[6]  J. S. Przemieniecki Theory of matrix structural analysis , 1985 .

[7]  B. Warneke,et al.  CMOS 3-axis accelerometers with integrated amplifier , 1998, Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176.

[8]  S. F. Bart,et al.  AutoMM: automatic generation of dynamic macromodels for MEMS devices , 1998, Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176.

[9]  I. E. Getreu Behavioral modeling of analog blocks using the Saber simulator , 1989, Proceedings of the 32nd Midwest Symposium on Circuits and Systems,.

[10]  Glenn H. Chapman,et al.  A wafer scale visual-to-thermal converter , 1993, 1993 Proceedings Fifth Annual IEEE International Conference on Wafer Scale Integration.

[11]  Satyandra K. Gupta,et al.  FEATURE-RECOGNITION FOR MEMS EXTRACTION , 1998 .

[12]  G. Fedder Integrated MEMS in Conventional CMOS , 1998 .

[13]  N. C. MacDonald,et al.  Optimal shape design of an electrostatic comb drive in microelectromechanical systems , 1998 .

[14]  Gary K. Fedder,et al.  Hierarchical Representation and Simulation of Micromachined Inertial Sensors , 1998 .

[15]  J. Bustillo,et al.  Process technology for the modular integration of CMOS and polysilicon microstructures , 1994 .

[16]  Kristofer S. J. Pister,et al.  MEMS SIMULATION USING SUGAR v0.5 , 1998 .

[17]  Tamal Mukherjee,et al.  Optimization-based synthesis of microresonators , 1998 .

[18]  D. Teegarden,et al.  How to model and simulate microgyroscope systems , 1998 .

[19]  Erik K. Antonsson,et al.  Structured Design Methods for MEMS , 1995 .

[20]  Dan Haronian Maximizing microelectromechanical sensor and actuator sensitivity by optimizing geometry , 1995 .

[21]  Kristofer S. J. Pister,et al.  Parameterized layout synthesis, extraction, and SPICE simulation for MEMS , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[22]  Farrokh Ayazi,et al.  Micromachined inertial sensors , 1998, Proc. IEEE.

[23]  O. Brand,et al.  Micromachined thermally based CMOS microsensors , 1998, Proc. IEEE.

[24]  G. Fedder,et al.  Laminated high-aspect-ratio microstructures in a conventional CMOS process , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.

[25]  A. M. Robinson,et al.  A new approach for the fabrication of micromechanical structures , 1989 .

[26]  G Lorenz,et al.  Network-Type Modeling of Micromachined Sensor Systems , 1998 .

[27]  Tamal Mukherjee,et al.  Design methodology for mixed-domain systems-on-a-chip [MEMS design] , 1998, Proceedings IEEE Computer Society Workshop on VLSI'98 System Level Design (Cat. No.98EX158).

[28]  Gary K. Fedder,et al.  Mechanical proper-ty measurement of 0.5 mm CMOS microstructures , 1998 .

[29]  Gary K. Fedder,et al.  Nodal Simulation of Suspended MEMS With Multiple Degrees of Freedom , 1997 .

[30]  D. W. Greve,et al.  FACTORIAL EXPERIMENT ON CMOS-MEMS RIE POST PROCESSING , 1998 .

[31]  G. Fedder,et al.  Structured Design Of Microelectromechanical Systems , 1997, Proceedings of the 34th Design Automation Conference.

[32]  Qi Jing,et al.  NODAS 1.3 - Nodal Design Of Actuators And Sensors , 1998 .

[33]  G. Fedder,et al.  A lateral capacitive CMOS accelerometer with structural curl compensation , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[34]  Cam Nguyen,et al.  Microelectromechanical devices for wireless communications , 1998, Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176.