Detecting gestures in medieval images

We present a template-based detector for gestures visualized in legal manuscripts of the Middle Ages. Depicted persons possess gestures with specific semantic meaning from the perspective of legal history. The hand drawn gestures exhibit noticeable variation in artistic style, size and orientation. They follow a distinct visual pattern, however, without any perspective effects. We present a method to learn a small set of templates representative of the gesture variability. We apply an efficient version of normalized cross-correlation to vote for gesture position, scale and orientation. Non-parametric kernel density estimation is used to identify hypotheses in voting space, and a discriminative verification step ranks the detections. We demonstrate our method on four types of gestures and show promising detection results.

[1]  Frédéric Jurie,et al.  Groups of Adjacent Contour Segments for Object Detection , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  B. N. Chatterji,et al.  An FFT-based technique for translation, rotation, and scale-invariant image registration , 1996, IEEE Trans. Image Process..

[3]  Roberto Brunelli,et al.  Advanced , 1980 .

[4]  J. P. Lewis,et al.  Fast Template Matching , 2009 .

[5]  George Wolberg,et al.  Robust image registration using log-polar transform , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[6]  B. Schiele,et al.  Combined Object Categorization and Segmentation With an Implicit Shape Model , 2004 .

[7]  Björn Ommer,et al.  Voting by Grouping Dependent Parts , 2010, ECCV.

[8]  Roberto Brunelli,et al.  Template Matching Techniques in Computer Vision: Theory and Practice , 2009 .

[9]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[10]  Daniel P. Huttenlocher,et al.  Pictorial Structures for Object Recognition , 2004, International Journal of Computer Vision.

[11]  Alin Achim,et al.  18th IEEE International Conference on Image Processing, ICIP 2011, Brussels, Belgium, September 11-14, 2011 , 2011, ICIP.

[12]  V. Kshirsagar,et al.  Face recognition using Eigenfaces , 2011, 2011 3rd International Conference on Computer Research and Development.

[13]  Andrew Zisserman,et al.  Learning an Alphabet of Shape and Appearance for Multi-Class Object Detection , 2008, International Journal of Computer Vision.

[14]  Jean-Claude Schmitt,et al.  La raison des gestes dans l'Occident médiéval , 1990 .

[15]  Jitendra Malik,et al.  Geometric blur for template matching , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[16]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[17]  Jitendra Malik,et al.  Matching Shapes , 2001, ICCV.