Terrestrial laser scanning in forest ecology: Expanding the horizon

[1]  Y. Malhi,et al.  Tree species classification using structural features derived from terrestrial laser scanning , 2020, ISPRS Journal of Photogrammetry and Remote Sensing.

[2]  M. Rautiainen,et al.  Direct estimation of photon recollision probability using terrestrial laser scanning , 2020, Remote Sensing of Environment.

[3]  S. Levick,et al.  Illuminating den‐tree selection by an arboreal mammal using terrestrial laser scanning in northern Australia , 2020, Remote Sensing in Ecology and Conservation.

[4]  Marcus Guderle,et al.  Moving from plot-based to hillslope-scale assessments of savanna vegetation structure with long-range terrestrial laser scanning (LR-TLS) , 2020, Int. J. Appl. Earth Obs. Geoinformation.

[5]  Di Wang,et al.  Unsupervised semantic and instance segmentation of forest point clouds , 2020 .

[6]  Yu-Hsuan Tu,et al.  Inter-comparison of remote sensing platforms for height estimation of mango and avocado tree crowns , 2020, Int. J. Appl. Earth Obs. Geoinformation.

[7]  Scott J. Goetz,et al.  The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography , 2020, Science of Remote Sensing.

[8]  Dacheng Tao,et al.  Recurrent Feature Reasoning for Image Inpainting , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Dan Wu,et al.  Suitability of Airborne and Terrestrial Laser Scanning for Mapping Tree Crop Structural Metrics for Improved Orchard Management , 2020, Remote. Sens..

[10]  F Morsdorf,et al.  Standardizing Ecosystem Morphological Traits from 3D Information Sources. , 2020, Trends in ecology & evolution.

[11]  Anthony G. Vorster,et al.  Variability and uncertainty in forest biomass estimates from the tree to landscape scale: the role of allometric equations , 2020, Carbon Balance and Management.

[12]  Kim Calders,et al.  Improved Supervised Learning-Based Approach for Leaf and Wood Classification From LiDAR Point Clouds of Forests , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Jiahui Chen,et al.  Structure-preserving shape completion of 3D point clouds with generative adversarial network , 2020 .

[14]  M. Disney,et al.  Quantifying urban forest structure with open-access remote sensing data sets , 2020, Urban Forestry & Urban Greening.

[15]  E. Honkavaara,et al.  Multisensorial Close-Range Sensing Generates Benefits for Characterization of Managed Scots Pine (Pinus sylvestris L.) Stands , 2020, ISPRS Int. J. Geo Inf..

[16]  E. Honkavaara,et al.  Assessing the effects of thinning on stem growth allocation of individual Scots pine trees , 2020, bioRxiv.

[17]  Juha Hyyppä,et al.  Accurate derivation of stem curve and volume using backpack mobile laser scanning , 2020, ISPRS Journal of Photogrammetry and Remote Sensing.

[18]  Philip Lewis,et al.  Assessment of Bias in Pan-Tropical Biomass Predictions , 2020, Frontiers in Forests and Global Change.

[19]  Le Bienfaiteur Takougoum Sagang,et al.  Leveraging Signatures of Plant Functional Strategies in Wood Density Profiles of African Trees to Correct Mass Estimations From Terrestrial Laser Data , 2020, Scientific Reports.

[20]  E. Casella,et al.  LeWoS: A universal leaf‐wood classification method to facilitate the 3D modelling of large tropical trees using terrestrial LiDAR , 2020, Methods in Ecology and Evolution.

[21]  Sruthi M. Krishna Moorthy,et al.  Terrestrial laser scanning for non-destructive estimates of liana stem biomass , 2020 .

[22]  P. Boucher Characterizing the Impacts of the Invasive Hemlock Woolly Adelgid on the Forest Structure of New England , 2020 .

[23]  M. Schaepman,et al.  The Laegeren Site: An Augmented Forest Laboratory , 2020 .

[24]  Juha Hyyppä,et al.  Variability of wood properties using airborne and terrestrial laser scanning , 2019 .

[25]  Eija Honkavaara,et al.  Forest in situ observations using unmanned aerial vehicle as an alternative of terrestrial measurements , 2019, Forest Ecosystems.

[26]  A. Kuusk Leaf orientation measurement in a mixed hemiboreal broadleaf forest stand using terrestrial laser scanner , 2019, Trees.

[27]  G. Asner,et al.  3D Imaging Insights into Forests and Coral Reefs. , 2019, Trends in ecology & evolution.

[28]  Lammert Kooistra,et al.  Non-destructive tree volume estimation through quantitative structure modelling: Comparing UAV laser scanning with terrestrial LIDAR , 2019, Remote Sensing of Environment.

[29]  Andreas Fichtner,et al.  Neighbour species richness and local structural variability modulate aboveground allocation patterns and crown morphology of individual trees. , 2019, Ecology letters.

[30]  J. Mills,et al.  Three dimensional mapping of forest canopy equivalent water thickness using dual-wavelength terrestrial laser scanning , 2019, Agricultural and Forest Meteorology.

[31]  Ahmed Elsherif,et al.  Four Dimensional Mapping of Vegetation Moisture Content Using Dual-Wavelength Terrestrial Laser Scanning , 2019, Remote. Sens..

[32]  David J. Harding,et al.  On promoting the use of lidar systems in forest ecosystem research , 2019, Forest Ecology and Management.

[33]  M. Vastaranta,et al.  Assessing the Effects of Sample Size on Parametrizing a Taper Curve Equation and the Resultant Stem-Volume Estimates , 2019, Forests.

[34]  D. Seidel,et al.  Effect of tree species mixing on stand structural complexity , 2019, Forestry: An International Journal of Forest Research.

[35]  Juha Hyyppä,et al.  The potential of dual-wavelength terrestrial lidar in early detection of Ips typographus (L.) infestation – Leaf water content as a proxy , 2019, Remote Sensing of Environment.

[36]  M. Disney,et al.  Time for a Plant Structural Economics Spectrum , 2019, Front. For. Glob. Change.

[37]  Kim Calders,et al.  Semi-automatic extraction of liana stems from terrestrial LiDAR point clouds of tropical rainforests , 2019, ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing.

[38]  M. Holopainen,et al.  Effect of canopy structure on the performance of tree mapping methods in urban parks , 2019, Urban Forestry & Urban Greening.

[39]  Langning Huo,et al.  Tree defoliation classification based on point distribution features derived from single-scan terrestrial laser scanning data , 2019, Ecological Indicators.

[40]  Louise C. Allen,et al.  Estimating Overwintering Monarch Butterfly Populations Using Terrestrial LiDAR Scanning , 2019, Front. Ecol. Evol..

[41]  J. D. Whyatt,et al.  The novel use of proximal photogrammetry and terrestrial LiDAR to quantify the structural complexity of orchard trees , 2019, Precision Agriculture.

[42]  M. Herold,et al.  An architectural understanding of natural sway frequencies in trees , 2019, Journal of the Royal Society Interface.

[43]  Qingwu Hu,et al.  A Novel Tree Height Extraction Approach for Individual Trees by Combining TLS and UAV Image-Based Point Cloud Integration , 2019, Forests.

[44]  Dong Kun Lee,et al.  The effects of tree characteristics on rainfall interception in urban areas , 2019, Landscape and Ecological Engineering.

[45]  M. Herold,et al.  Tree Biomass Equations from Terrestrial LiDAR: A Case Study in Guyana , 2019, Forests.

[46]  Doreen S. Boyd,et al.  The World's Tallest Tropical Tree in Three Dimensions , 2019, Front. For. Glob. Change.

[47]  Klaus Scipal,et al.  The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space , 2019, Remote Sensing of Environment.

[48]  Juha Hyyppä,et al.  Investigating the Feasibility of Multi-Scan Terrestrial Laser Scanning to Characterize Tree Communities in Southern Boreal Forests , 2019, Remote. Sens..

[49]  Sassan Saatchi,et al.  Upscaling Forest Biomass from Field to Satellite Measurements: Sources of Errors and Ways to Reduce Them , 2019, Surveys in Geophysics.

[50]  M. Herold,et al.  The Importance of Consistent Global Forest Aboveground Biomass Product Validation , 2019, Surveys in Geophysics.

[51]  Junseok Kwon,et al.  3D Point Cloud Generative Adversarial Network Based on Tree Structured Graph Convolutions , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[52]  Daniel M. Johnson,et al.  Terrestrial lidar scanning reveals fine-scale linkages between microstructure and photosynthetic functioning of small-stature spruce trees at the forest-tundra ecotone , 2019, Agricultural and Forest Meteorology.

[53]  Christoph Eck,et al.  New Opportunities for Forest Remote Sensing Through Ultra-High-Density Drone Lidar , 2019, Surveys in Geophysics.

[54]  M. Vastaranta,et al.  Detecting and characterizing downed dead wood using terrestrial laser scanning , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[55]  M. Herold,et al.  Estimating architecture-based metabolic scaling exponents of tropical trees using terrestrial LiDAR and 3D modelling , 2019, Forest Ecology and Management.

[56]  Juha Hyyppä,et al.  Examining Changes in Stem Taper and Volume Growth with Two-Date 3D Point Clouds , 2019, Forests.

[57]  Klaus Scipal,et al.  Ground Data are Essential for Biomass Remote Sensing Missions , 2019, Surveys in Geophysics.

[58]  P. Litkey,et al.  A Clustering Framework for Monitoring Circadian Rhythm in Structural Dynamics in Plants From Terrestrial Laser Scanning Time Series , 2019, Front. Plant Sci..

[59]  Michael E. Schaepman,et al.  Quantifying 3D structure and occlusion in dense tropical and temperate forests using close-range LiDAR , 2019, Agricultural and Forest Meteorology.

[60]  Peter Annighöfer,et al.  Assessing Understory Complexity in Beech-dominated Forests (Fagus sylvatica L.) in Central Europe—From Managed to Primary Forests , 2019, Sensors.

[61]  Mathias Disney,et al.  Innovations in Ground and Airborne Technologies as Reference and for Training and Validation: Terrestrial Laser Scanning (TLS) , 2019, Surveys in Geophysics.

[62]  Crystal Schaaf,et al.  Characterizing a New England Saltmarsh with NASA G-LiHT Airborne Lidar , 2019, Remote. Sens..

[63]  Javier Estornell,et al.  Estimating residual biomass of olive tree crops using terrestrial laser scanning , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[64]  Fumiki Hosoi,et al.  Estimation of Leaf Inclination Angle in Three-Dimensional Plant Images Obtained from Lidar , 2019, Remote. Sens..

[65]  Xiaoli Sun,et al.  The GEDI Simulator: A Large‐Footprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions , 2019, Earth and space science.

[66]  Simon D. Jones,et al.  Variation of leaf angle distribution quantified by terrestrial LiDAR in natural European beech forest , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[67]  M. Disney,et al.  Leaf and wood classification framework for terrestrial LiDAR point clouds , 2019, Methods in Ecology and Evolution.

[68]  J. Pisek,et al.  New estimates of leaf angle distribution from terrestrial LiDAR: Comparison with measured and modelled estimates from nine broadleaf tree species , 2019, Agricultural and Forest Meteorology.

[69]  J. Trochta,et al.  Beyond the cones: How crown shape plasticity alters aboveground competition for space and light—Evidence from terrestrial laser scanning , 2019, Agricultural and Forest Meteorology.

[70]  Rahil Garnavi,et al.  Deep Semantic Instance Segmentation of Tree-Like Structures Using Synthetic Data , 2018, 2019 IEEE Winter Conference on Applications of Computer Vision (WACV).

[71]  M. Disney Terrestrial LiDAR: a three-dimensional revolution in how we look at trees. , 2018, The New phytologist.

[72]  Annika Kangas,et al.  Measuring stem diameters with TLS in boreal forests by complementary fitting procedure , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[73]  M. Vastaranta,et al.  Assessing log geometry and wood quality in standing timber using terrestrial laser-scanning point clouds , 2018, Forestry: An International Journal of Forest Research.

[74]  Mathias Disney,et al.  Extracting individual trees from lidar point clouds using treeseg , 2018, Methods in Ecology and Evolution.

[75]  C. Schmullius,et al.  Variability in fire-induced change to vegetation physiognomy and biomass in semi-arid savanna , 2018, Ecosphere.

[76]  Jing Liu,et al.  Improving leaf area index (LAI) estimation by correcting for clumping and woody effects using terrestrial laser scanning , 2018, Agricultural and Forest Meteorology.

[77]  M. Herold,et al.  Assessing the structural differences between tropical forest types using Terrestrial Laser Scanning , 2018, Forest Ecology and Management.

[78]  E. Tuittila,et al.  Ancillary vegetation measurements at ICOS ecosystem stations , 2018, International Agrophysics.

[79]  H. Sjögren,et al.  Effects on stem growth of Scots pine 33 years after thinning and/or fertilization in northern Sweden , 2018, Scandinavian Journal of Forest Research.

[80]  A. Fichtner,et al.  Long-Term Abandonment of Forest Management Has a Strong Impact on Tree Morphology and Wood Volume Allocation Pattern of European Beech (Fagus Sylvatica L.) , 2018, Forests.

[81]  Lars T. Waser,et al.  Identifying Tree-Related Microhabitats in TLS Point Clouds Using Machine Learning , 2018, Remote. Sens..

[82]  Jonathon J. Donager,et al.  Examining Forest Structure With Terrestrial Lidar: Suggestions and Novel Techniques Based on Comparisons Between Scanners and Forest Treatments , 2018, Earth and Space Science.

[83]  H. Shugart,et al.  Assessing terrestrial laser scanning for developing non-destructive biomass allometry , 2018, Forest Ecology and Management.

[84]  R. Fournier,et al.  Analyzing the Vertical Distribution of Crown Material in Mixed Stand Composed of Two Temperate Tree Species , 2018, Forests.

[85]  Kim Calders,et al.  Distinguishing vegetation types with airborne waveform lidar data in a tropical forest-savanna mosaic: A case study in Lopé National Park, Gabon , 2018, Remote Sensing of Environment.

[86]  Norbert Pfeifer,et al.  International benchmarking of terrestrial laser scanning approaches for forest inventories , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[87]  Pol Coppin,et al.  A Simulation Study Using Terrestrial LiDAR Point Cloud Data to Quantify Spectral Variability of a Broad-Leaved Forest Canopy , 2018, Sensors.

[88]  J. Dupuy,et al.  Estimators and confidence intervals for plant area density at voxel scale with T-LiDAR , 2018, Remote Sensing of Environment.

[89]  Le Bienfaiteur Takougoum Sagang,et al.  Using volume-weighted average wood specific gravity of trees reduces bias in aboveground biomass predictions from forest volume data , 2018, Forest Ecology and Management.

[90]  G. Bohrer,et al.  Quantifying vegetation and canopy structural complexity from terrestrial LiDAR data using the forestr r package , 2018, Methods in Ecology and Evolution.

[91]  Laura E. Chasmer,et al.  Filtering Stems and Branches from Terrestrial Laser Scanning Point Clouds Using Deep 3-D Fully Convolutional Networks , 2018, Remote. Sens..

[92]  Hans-Gerd Maas,et al.  Comparison and Combination of Mobile and Terrestrial Laser Scanning for Natural Forest Inventories , 2018, Forests.

[93]  M. Disney,et al.  Estimating urban above ground biomass with multi-scale LiDAR , 2018, Carbon Balance and Management.

[94]  Philip Lewis,et al.  Realistic Forest Stand Reconstruction from Terrestrial LiDAR for Radiative Transfer Modelling , 2018, Remote. Sens..

[95]  Andreas Fichtner,et al.  A high‐resolution approach for the spatiotemporal analysis of forest canopy space using terrestrial laser scanning data , 2018, Ecology and evolution.

[96]  Alexandra Bac,et al.  Surface reconstruction of incomplete datasets: A novel Poisson surface approach based on CSRBF , 2018, Comput. Graph..

[97]  M. Herold,et al.  Quantifying branch architecture of tropical trees using terrestrial LiDAR and 3D modelling , 2018, Trees.

[98]  N. Pfeifer,et al.  Separating Tree Photosynthetic and Non-Photosynthetic Components from Point Cloud Data Using Dynamic Segment Merging , 2018 .

[99]  Juha Hyyppä,et al.  Quantitative Assessment of Scots Pine (Pinus Sylvestris L.) Whorl Structure in a Forest Environment Using Terrestrial Laser Scanning , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[100]  Philip Lewis,et al.  Variability and bias in active and passive ground-based measurements of effective plant, wood and leaf area index , 2018 .

[101]  M. Jones,et al.  Vegetation , 2018, Eastern Alpine Guide.

[102]  Lucy A. Schofield,et al.  Spectral and spatial information from a novel dual-wavelength full-waveform terrestrial laser scanner for forest ecology , 2018, Interface Focus.

[103]  C. Gough,et al.  Forest Canopy Structural Complexity and Light Absorption Relationships at the Subcontinental Scale , 2018 .

[104]  Diego González-Aguilera,et al.  Comparing Terrestrial Laser Scanning (TLS) and Wearable Laser Scanning (WLS) for Individual Tree Modeling at Plot Level , 2018, Remote. Sens..

[105]  Herman H. Shugart,et al.  Improved Biomass Calibration and Validation With Terrestrial LiDAR: Implications for Future LiDAR and SAR Missions , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[106]  A. Strahler,et al.  On the utilization of novel spectral laser scanning for three-dimensional classification of vegetation elements , 2018, Interface Focus.

[107]  Harm Bartholomeus,et al.  New perspectives on the ecology of tree structure and tree communities through terrestrial laser scanning , 2018, Interface Focus.

[108]  C. Schaaf,et al.  Bounding uncertainty in volumetric geometric models for terrestrial lidar observations of ecosystems , 2018, Interface Focus.

[109]  M I Disney,et al.  Weighing trees with lasers: advances, challenges and opportunities , 2018, Interface Focus.

[110]  Markku Åkerblom,et al.  Non-intersecting leaf insertion algorithm for tree structure models , 2018, Interface Focus.

[111]  Xi Zhu,et al.  Foliar and woody materials discriminated using terrestrial LiDAR in a mixed natural forest , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[112]  M. Balsi,et al.  Single-tree detection in high-density LiDAR data from UAV-based survey , 2018 .

[113]  Yin Zhou,et al.  VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[114]  M. Dassot,et al.  Terrestrial laser scanning reveals differences in crown structure of Fagus sylvatica in mixed vs. pure European forests , 2017 .

[115]  M. Herold,et al.  Estimation of above‐ground biomass of large tropical trees with terrestrial LiDAR , 2017 .

[116]  Norbert Pfeifer,et al.  A Case Study of UAS Borne Laser Scanning for Measurement of Tree Stem Diameter , 2017, Remote. Sens..

[117]  N. Barbier,et al.  Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach , 2017 .

[118]  Xuan Zhu,et al.  Development of a predictive model for estimating forest surface fuel load in Australian eucalypt forests with LiDAR data , 2017, Environ. Model. Softw..

[119]  H. Pretzsch,et al.  A review of thinning effects on Scots pine stands: From growth and yield to new challenges under global change , 2017 .

[120]  Anthony G. Vorster,et al.  Non-destructive aboveground biomass estimation of coniferous trees using terrestrial LiDAR , 2017 .

[121]  Lammert Kooistra,et al.  Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR , 2017, Sensors.

[122]  Peter Annighöfer,et al.  How management intensity and neighborhood composition affect the structure of beech (Fagus sylvatica L.) trees , 2017, Trees.

[123]  M. Herold,et al.  Data acquisition considerations for Terrestrial Laser Scanning of forest plots , 2017 .

[124]  D. Seidel,et al.  Canopy space filling rather than conventional measures of structural diversity explains productivity of beech stands , 2017 .

[125]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[126]  Roberta E. Martin,et al.  Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. , 2017, Ecology letters.

[127]  J. Trochta,et al.  3D Forest: An application for descriptions of three-dimensional forest structures using terrestrial LiDAR , 2017, PloS one.

[128]  Q. Guo,et al.  An integrated UAV-borne lidar system for 3D habitat mapping in three forest ecosystems across China , 2017 .

[129]  Richard A. Fournier,et al.  Estimation of 3D vegetation density with Terrestrial Laser Scanning data using voxels. A sensitivity analysis of influencing parameters , 2017 .

[130]  Markku Åkerblom,et al.  Automatic tree species recognition with quantitative structure models , 2017 .

[131]  Heinrich Spiecker,et al.  Terrestrial laser scanning as a tool for assessing tree growth , 2017 .

[132]  Jasmine Muir,et al.  Evaluation of the Range Accuracy and the Radiometric Calibration of Multiple Terrestrial Laser Scanning Instruments for Data Interoperability , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[133]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[134]  Gernot Riegler,et al.  OctNet: Learning Deep 3D Representations at High Resolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[135]  Juha Hyyppä,et al.  Feasibility of Terrestrial laser scanning for collecting stem volume information from single trees , 2017 .

[136]  Kevin J. Gaston,et al.  Measurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: Calibration and validation with voxelised terrestrial lidar , 2017 .

[137]  Alan H. Strahler,et al.  Observing ecosystems with lightweight, rapid‐scanning terrestrial lidar scanners , 2016 .

[138]  R. Samson,et al.  Influence of tree crown characteristics on the local PM10 distribution inside an urban street canyon in Antwerp (Belgium) : a model and experimental approach , 2016 .

[139]  Lin Cao,et al.  A Novel Approach for Retrieving Tree Leaf Area from Ground-Based LiDAR , 2016, Remote. Sens..

[140]  Tim Wardlaw,et al.  The Australian SuperSite Network: A continental, long-term terrestrial ecosystem observatory. , 2016, The Science of the total environment.

[141]  Marta Yebra,et al.  Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR , 2016 .

[142]  Nicola Lercari,et al.  Terrestrial Laser Scanning in the Age of Sensing , 2016 .

[143]  Simon D. Jones,et al.  An Assessment of Pre- and Post Fire Near Surface Fuel Hazard in an Australian Dry Sclerophyll Forest Using Point Cloud Data Captured Using a Terrestrial Laser Scanner , 2016, Remote. Sens..

[144]  Mathias Disney,et al.  African Savanna-Forest Boundary Dynamics: A 20-Year Study , 2016, PloS one.

[145]  Sébastien Bauwens,et al.  Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning , 2016 .

[146]  Matthias Huss,et al.  Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps , 2016 .

[147]  Juha Hyyppä,et al.  THE EFFECT of WIND on TREE STEM PARAMETER ESTIMATION USING TERRESTRIAL LASER SCANNING , 2016 .

[148]  M. Vastaranta,et al.  Terrestrial laser scanning in forest inventories , 2016 .

[149]  Christina Herrick,et al.  Estimating Tropical Forest Structure Using a Terrestrial Lidar , 2016, PloS one.

[150]  Jan van Aardt,et al.  Marker-Free Registration of Forest Terrestrial Laser Scanner Data Pairs With Embedded Confidence Metrics , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[151]  P. Couteron,et al.  Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries , 2016 .

[152]  K. Puettmann,et al.  Canopy gaps affect the shape of Douglas-fir crowns in the western Cascades, Oregon , 2016 .

[153]  Alan H. Strahler,et al.  Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar , 2016, Sensors.

[154]  F. Mark Danson,et al.  Radiometric calibration of a dual-wavelength terrestrial laser scanner using neural networks , 2016 .

[155]  Stefano Campana,et al.  Digital Methods and Remote Sensing in Archaeology. Archaeology in the Age of Sensing , 2016 .

[156]  Mathias Disney,et al.  Remote Sensing of Vegetation: Potentials, Limitations, Developments and Applications , 2016 .

[157]  Andrew K. Skidmore,et al.  3D leaf water content mapping using terrestrial laser scanner backscatter intensity with radiometric correction , 2015 .

[158]  Heinrich Spiecker,et al.  SimpleTree —An Efficient Open Source Tool to Build Tree Models from TLS Clouds , 2015 .

[159]  Jean‐François Bastin,et al.  Wood Specific Gravity Variations and Biomass of Central African Tree Species: The Simple Choice of the Outer Wood , 2015, PloS one.

[160]  Stuart N. Lane,et al.  Lidar measurement of surface melt for a temperate Alpine glacier at the seasonal and hourly scales , 2015, Journal of Glaciology.

[161]  Nadine Gobron,et al.  The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: Actual canopy scenarios and conformity testing , 2015 .

[162]  F. M. Danson,et al.  Terrestrial Laser Scanning for Plot-Scale Forest Measurement , 2015, Current Forestry Reports.

[163]  Lorenzo Bruzzone,et al.  A precise estimation of the 3D structure of the forest based on the fusion of airborne and terrestrial lidar data , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[164]  Dominik Seidel,et al.  Mechanical abrasion, and not competition for light, is the dominant canopy interaction in a temperate mixed forest , 2015 .

[165]  D. Seidel,et al.  Relationship between tree growth and physical dimensions of Fagus sylvatica crowns assessed from terrestrial laser scanning , 2015 .

[166]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[167]  Juha Hyyppä,et al.  Forest Data Collection Using Terrestrial Image-Based Point Clouds From a Handheld Camera Compared to Terrestrial and Personal Laser Scanning , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[168]  Paul A. Rosen,et al.  The NASA-ISRO SAR mission - An international space partnership for science and societal benefit , 2015, 2015 IEEE Radar Conference (RadarCon).

[169]  Subhransu Maji,et al.  Multi-view Convolutional Neural Networks for 3D Shape Recognition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[170]  Markku Åkerblom,et al.  Analysis of Geometric Primitives in Quantitative Structure Models of Tree Stems , 2015, Remote. Sens..

[171]  Jan Verbesselt,et al.  Monitoring spring phenology with high temporal resolution terrestrial LiDAR measurements , 2015 .

[172]  Alan H. Strahler,et al.  Finding Leaves in the Forest: The Dual-Wavelength Echidna Lidar , 2015, IEEE Geoscience and Remote Sensing Letters.

[173]  P. Raumonen,et al.  Massive-Scale Tree Modelling from Tls Data , 2015 .

[174]  K. Itten,et al.  Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX) , 2015 .

[175]  Sorin C. Popescu,et al.  Terrestrial Laser Scanning as an Effective Tool to Retrieve Tree Level Height, Crown Width, and Stem Diameter , 2015, Remote. Sens..

[176]  M. Herold,et al.  Nondestructive estimates of above‐ground biomass using terrestrial laser scanning , 2015 .

[177]  Markus Hollaus,et al.  First examples from the RIEGL VUX-SYS for forestry applications , 2015 .

[178]  Craig L. Glennie,et al.  Empirical Waveform Decomposition and Radiometric Calibration of a Terrestrial Full-Waveform Laser Scanner , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[179]  Heinrich Spiecker,et al.  Analysis of wood density profiles of tree stems: incorporating vertical variations to optimize wood sampling strategies for density and biomass estimations , 2014, Trees.

[180]  R. Samson,et al.  On the relation between tree crown morphology and particulate matter deposition on urban tree leaves : a ground-based LiDAR approach , 2014 .

[181]  Sanna Kaasalainen,et al.  Indirect emissions of forest bioenergy: detailed modeling of stump‐root systems , 2014 .

[182]  F. Mark Danson,et al.  Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure , 2014 .

[183]  B. Nelson,et al.  Improved allometric models to estimate the aboveground biomass of tropical trees , 2014, Global change biology.

[184]  Maarten Nieuwenhuis,et al.  Validation of terrestrial laser scanning data using conventional forest inventory methods , 2014, European Journal of Forest Research.

[185]  M. Schaepman,et al.  Simulating imaging spectrometer data: 3D forest modeling based on LiDAR and in situ data , 2014 .

[186]  Martin Herold,et al.  Implications of sensor configuration and topography on vertical plant profiles derived from terrestrial LiDAR , 2014 .

[187]  Neil Sims,et al.  Automated In-Situ Laser Scanner for Monitoring Forest Leaf Area Index , 2014, Sensors.

[188]  Brian Huntley,et al.  Characterising forest gap fraction with terrestrial lidar and photography: An examination of relative limitations , 2014 .

[189]  O. Phillips,et al.  The importance of crown dimensions to improve tropical tree biomass estimates. , 2014, Ecological applications : a publication of the Ecological Society of America.

[190]  Juha Hyyppä,et al.  Urban-Tree-Attribute Update Using Multisource Single-Tree Inventory , 2014 .

[191]  Harri Kaartinen,et al.  Change Detection of Tree Biomass with Terrestrial Laser Scanning and Quantitative Structure Modelling , 2014, Remote. Sens..

[192]  Arko Lucieer,et al.  Evaluating Tree Detection and Segmentation Routines on Very High Resolution UAV LiDAR Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[193]  Sorin C. Popescu,et al.  Multi-temporal terrestrial laser scanning for modeling tree biomass change , 2014 .

[194]  Arko Lucieer,et al.  An Assessment of the Repeatability of Automatic Forest Inventory Metrics Derived From UAV-Borne Laser Scanning Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[195]  J. Widlowski,et al.  Abstract tree crowns in 3D radiative transfer models: Impact on simulated open-canopy reflectances , 2014 .

[196]  D. Baldocchi,et al.  On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR , 2014 .

[197]  Christian Szegedy,et al.  DeepPose: Human Pose Estimation via Deep Neural Networks , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[198]  Martin Beland,et al.  A model for deriving voxel-level tree leaf area density estimates from ground-based LiDAR , 2014, Environ. Model. Softw..

[199]  Jingjue Jiang,et al.  Assessing leaf photoprotective mechanisms using terrestrial LiDAR: towards mapping canopy photosynthetic performance in three dimensions. , 2014, The New phytologist.

[200]  Brian J Enquist,et al.  Deviation from symmetrically self-similar branching in trees predicts altered hydraulics, mechanics, light interception and metabolic scaling. , 2014, The New phytologist.

[201]  Daniel Ramp,et al.  Creating vegetation density profiles for a diverse range of ecological habitats using terrestrial laser scanning , 2013 .

[202]  Lew Fock Chong Lew Yan Voon,et al.  Single tree species classification from Terrestrial Laser Scanning data for forest inventory , 2013, Pattern Recognit. Lett..

[203]  David Belton,et al.  PROCESSING TREE POINT CLOUDS USING GAUSSIAN MIXTURE MODELS , 2013 .

[204]  E. Schulze,et al.  Crown modeling by terrestrial laser scanning as an approach to assess the effect of aboveground intra- and interspecific competition on tree growth , 2013 .

[205]  Lisa Patrick Bentley,et al.  An empirical assessment of tree branching networks and implications for plant allometric scaling models. , 2013, Ecology letters.

[206]  Rachel Gaulton,et al.  The potential of dual-wavelength laser scanning for estimating vegetation moisture content , 2013 .

[207]  M. Vastaranta,et al.  Stem biomass estimation based on stem reconstruction from terrestrial laser scanning point clouds , 2013 .

[208]  Hans Pretzsch,et al.  Structural crown properties of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in mixed versus pure stands revealed by terrestrial laser scanning , 2013, Trees.

[209]  Philip Lewis,et al.  Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data , 2013, Remote. Sens..

[210]  Juha Hyyppä,et al.  Individual tree biomass estimation using terrestrial laser scanning , 2013 .

[211]  Eve-Lyn S. Hinckley,et al.  NEON terrestrial field observations: designing continental scale, standardized sampling , 2012 .

[212]  Kasper Johansen,et al.  Evaluation of terrestrial laser scanners for measuring vegetation structure , 2012 .

[213]  Arko Lucieer,et al.  Development of a UAV-LiDAR System with Application to Forest Inventory , 2012, Remote. Sens..

[214]  J. Suomalainen,et al.  Full waveform hyperspectral LiDAR for terrestrial laser scanning. , 2012, Optics express.

[215]  Stefan Fleck,et al.  Analyzing forest canopies with ground-based laser scanning: A comparison with hemispherical photography , 2012 .

[216]  Juha Hyyppä,et al.  Automatic Stem Mapping Using Single-Scan Terrestrial Laser Scanning , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[217]  F. Rocca,et al.  The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle , 2011 .

[218]  M. Verstraete,et al.  Estimating leaf area distribution in savanna trees from terrestrial LiDAR measurements , 2011 .

[219]  C. Leuschner,et al.  Crown plasticity in mixed forests—Quantifying asymmetry as a measure of competition using terrestrial laser scanning , 2011 .

[220]  Stefan Fleck,et al.  Comparison of conventional eight-point crown projections with LIDAR-based virtual crown projections in a temperate old-growth forest , 2011, Annals of Forest Science.

[221]  Pablo J. Zarco-Tejada,et al.  Field characterization of olive (Olea europaea L.) tree crown architecture using terrestrial laser scanning data , 2011 .

[222]  Martial Bernoux,et al.  Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. , 2011 .

[223]  D D Smith,et al.  Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants , 2010, Proceedings of the National Academy of Sciences.

[224]  Yi Lin,et al.  A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements , 2010 .

[225]  Derek C. Rose,et al.  Deep Machine Learning - A New Frontier in Artificial Intelligence Research [Research Frontier] , 2010, IEEE Computational Intelligence Magazine.

[226]  J. Eitel,et al.  Simultaneous measurements of plant structure and chlorophyll content in broadleaf saplings with a terrestrial laser scanner , 2010 .

[227]  N. Fahlvik,et al.  Thinning of Scots pine and Norway spruce monocultures in Sweden , 2010 .

[228]  Andrew Thomas Hudak,et al.  LiDAR Utility for Natural Resource Managers , 2009, Remote. Sens..

[229]  J. K. Hiers,et al.  Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics , 2009 .

[230]  Richard A. Fournier,et al.  The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidar , 2009 .

[231]  Geoffrey B. West,et al.  A general quantitative theory of forest structure and dynamics , 2009, Proceedings of the National Academy of Sciences.

[232]  James H Brown,et al.  Extensions and evaluations of a general quantitative theory of forest structure and dynamics , 2009, Proceedings of the National Academy of Sciences.

[233]  C. Woodcock,et al.  Estimating forest LAI profiles and structural parameters using a ground-based laser called 'Echidna'. , 2008, Tree physiology.

[234]  Alan H. Strahler,et al.  Retrieval of forest structural parameters using a ground-based lidar instrument (Echidna®) , 2008 .

[235]  R. Hall,et al.  Assessing prediction errors of generalized tree biomass and volume equations for the boreal forest region of west-central Canada , 2008 .

[236]  Hans-Gerd Maas,et al.  Automatic forest inventory parameter determination from terrestrial laser scanner data , 2008 .

[237]  Michael A. Lefsky,et al.  Volume estimates of trees with complex architecture from terrestrial laser scanning , 2008 .

[238]  Alexander Bucksch,et al.  CAMPINO : A skeletonization method for point cloud processing , 2008 .

[239]  Nathan G. Swenson,et al.  A general integrative model for scaling plant growth, carbon flux, and functional trait spectra , 2007, Nature.

[240]  Kenji Omasa,et al.  Voxel-Based 3-D Modeling of Individual Trees for Estimating Leaf Area Density Using High-Resolution Portable Scanning Lidar , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[241]  Erik Eriksson,et al.  Thinning operations and their impact on biomass production in stands of Norway spruce and Scots pine , 2006 .

[242]  P. Radtke,et al.  Detailed Stem Measurements of Standing Trees from Ground-Based Scanning Lidar , 2006, Forest Science.

[243]  Timo Kahlmann,et al.  CALIBRATION FOR INCREASED ACCURACY OF THE RANGE IMAGING CAMERA SWISSRANGER , 2006 .

[244]  R. Vasiliauskas,et al.  Effects of thinning on growth of six tree species in north-temperate forests of Lithuania , 2005, European Journal of Forest Research.

[245]  J. Chambers,et al.  Tree allometry and improved estimation of carbon stocks and balance in tropical forests , 2005, Oecologia.

[246]  Raisa Mäkipää,et al.  Biomass and stem volume equations for tree species in Europe , 2005, Silva Fennica Monographs.

[247]  H. Mäkinen,et al.  Thinning intensity and long-term changes in increment and stem form of Scots pine trees , 2004 .

[248]  David J. Harding,et al.  A portable LIDAR system for rapid determination of forest canopy structure , 2004 .

[249]  C. Hopkinson,et al.  Assessing forest metrics with a ground-based scanning lidar , 2004 .

[250]  Frédéric Baret,et al.  Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography , 2004 .

[251]  N. Coops,et al.  Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests , 2003 .

[252]  J. Hicke,et al.  Global synthesis of leaf area index observations: implications for ecological and remote sensing studies , 2003 .

[253]  George Vosselman,et al.  Report: ISPRS Comparison of Filters , 2003 .

[254]  J. Blair,et al.  Modeling laser altimeter return waveforms over complex vegetation using high‐resolution elevation data , 1999 .

[255]  Aloysius Wehr,et al.  Airborne laser scanning—an introduction and overview , 1999 .

[256]  Oliver Deussen,et al.  Interactive Modeling of Plants , 1999, IEEE Computer Graphics and Applications.

[257]  James H. Brown,et al.  A General Model for the Origin of Allometric Scaling Laws in Biology , 1997, Science.

[258]  Jason Weber,et al.  Creation and rendering of realistic trees , 1995, SIGGRAPH.

[259]  J. Monteith,et al.  The Radiation Regime and Architecture of Plant Stands. , 1983 .

[260]  J. Ross The radiation regime and architecture of plant stands , 1981, Tasks for vegetation sciences 3.

[261]  Francis Hallé,et al.  Opportunistic Tree Architecture , 1978 .

[262]  J. Wilson,et al.  ANALYSIS OF THE SPATIAL DISTRIBUTION OF FOLIAGE BY TWO‐DIMENSIONAL POINT QUADRATS , 1959 .