Oils and fats as renewable raw materials in chemistry.

Oils and fats of vegetable and animal origin have been the most important renewable feedstock of the chemical industry in the past and in the present. A tremendous geographical and feedstock shift of oleochemical production has taken place from North America and Europe to southeast Asia and from tallow to palm oil. It will be important to introduce and to cultivate more and new oil plants containing fatty acids with interesting and desired properties for chemical utilization while simultaneously increasing the agricultural biodiversity. The problem of the industrial utilization of food plant oils has become more urgent with the development of the global biodiesel production. The remarkable advances made during the last decade in organic synthesis, catalysis, and biotechnology using plant oils and the basic oleochemicals derived from them will be reported, including, for example, ω-functionalization of fatty acids containing internal double bonds, application of the olefin metathesis reaction, and de novo synthesis of fatty acids from abundantly available renewable carbon sources.

[1]  Andreas Martin,et al.  Catalytic cleavage of methyl oleate or oleic acid , 2010 .

[2]  A. Behr,et al.  Isomerizing hydroformylation of fatty acid esters: Formation of ω‐aldehydes , 2005 .

[3]  B. Chisholm,et al.  Soy-based UV-curable thiol–ene coatings , 2010 .

[4]  H. Schäfer,et al.  Alkynic fatty acids: ω-Arylation, methoxycarbonylation to α,β-unsaturated esters, cyclotrimerization to pyridines and 2-pyridones , 2011 .

[5]  J. Mol,et al.  Degradation of the ruthenium-based metathesis catalyst [RuCl2(=CHPh)(H2IPr)(PCy3)] with primary alcohols , 2004 .

[6]  Brajendra Kumar Sharma,et al.  Diesters from Oleic Acid: Synthesis, Low Temperature Properties, and Oxidation Stability , 2007 .

[7]  Cédric Fischmeister,et al.  First Transformation of Unsaturated Fatty Esters Involving Enyne Cross-Metathesis , 2009 .

[8]  Andreas Schirmer,et al.  New microbial fuels: a biotech perspective. , 2009, Current opinion in microbiology.

[9]  M. Kunz,et al.  Polymers and surfactants on the basis of renewable resources. , 2001, Chemosphere.

[10]  Anders S Carlsson,et al.  Plant oils as feedstock alternatives to petroleum - A short survey of potential oil crop platforms. , 2009, Biochimie.

[11]  Andreas Martin,et al.  Epoxidation of methyl oleate with molecular oxygen in the presence of aldehydes , 2008 .

[12]  B. Sunderland,et al.  Western Australian sandalwood seed oil: new opportunities , 2010 .

[13]  J. W. Ziller,et al.  Eine Reihe definierter Metathesekatalysatoren – Synthese von und Reaktionen mit [RuCl2 ( CHR′)(PR3)2] , 1995 .

[14]  Rosaria Ciriminna,et al.  Von Glycerin zu höherwertigen Produkten , 2007 .

[15]  A. Steinbüchel,et al.  A Novel Bifunctional Wax Ester Synthase/Acyl-CoA:Diacylglycerol Acyltransferase Mediates Wax Ester and Triacylglycerol Biosynthesis inAcinetobacter calcoaceticus ADP1* , 2003, The Journal of Biological Chemistry.

[16]  E. Heldman,et al.  Asymmetric bolaamphiphiles from vernonia oil designed for drug delivery , 2010 .

[17]  Y. Basiron Palm oil production through sustainable plantations , 2007 .

[18]  R. Schrock,et al.  Ethenolysis reactions catalyzed by imido alkylidene monoaryloxide monopyrrolide (MAP) complexes of molybdenum. , 2009, Journal of the American Chemical Society.

[19]  R. Grubbs,et al.  Decomposition of a key intermediate in ruthenium-catalyzed olefin metathesis reactions. , 2004, Journal of the American Chemical Society.

[20]  Volodymyr Sashuk,et al.  Nitro-substituted Hoveyda-Grubbs ruthenium carbenes: enhancement of catalyst activity through electronic activation. , 2004, Journal of the American Chemical Society.

[21]  Alexander Steinbüchel,et al.  Fatty acid alkyl esters: perspectives for production of alternative biofuels , 2010, Applied Microbiology and Biotechnology.

[22]  J. Ziller,et al.  Synthesis and Applications of RuCl2(CHR‘)(PR3)2: The Influence of the Alkylidene Moiety on Metathesis Activity , 1996 .

[23]  A. E. Kadib,et al.  Highly Selective C-Silylation of Fatty Acid Methyl Esters , 2005 .

[24]  Hatice Mutlu,et al.  Castor oil as a renewable resource for the chemical industry , 2010 .

[25]  M. Meier,et al.  Unsaturated PA X,20 from Renewable Resources via Metathesis and Catalytic Amidation , 2009 .

[26]  K. Timmis,et al.  Conversion of a carboxylesterase into a triacylglycerol lipase by a random mutation. , 2005, Angewandte Chemie.

[27]  V. Cádiz,et al.  A new enone‐containing triglyceride derivative as precursor of thermosets from renewable resources , 2008 .

[28]  M. R. Kessler,et al.  Ring‐opening metathesis polymerization of a modified linseed oil with varying levels of crosslinking , 2008 .

[29]  J. A. Rothfus,et al.  Enrichment of eicosenoic and docosadienoic acids fromLimnanthes oil , 1977 .

[30]  J. Metzger,et al.  Synthesis of Enantiomerically Pure 2,3,4,6‐Tetrasubstituted Tetrahydropyrans by Prins‐Type Cyclization of Methyl Ricinoleate and Aldehydes , 2006 .

[31]  H. Baumann,et al.  Natural Fats and Oils—Renewable Raw Materials for the Chemical Industry , 1988 .

[32]  J. Keasling,et al.  Microbial production of fatty-acid-derived fuels and chemicals from plant biomass , 2010, Nature.

[33]  A. Behr,et al.  Hydroaminomethylation of fatty acids with primary and secondary amines — A new route to interesting surfactant substrates , 2000 .

[34]  C. Bruneau,et al.  A direct route to bifunctional aldehyde derivatives via self- and cross-metathesis of unsaturated aldehydes. , 2009, ChemSusChem.

[35]  Shuguang Zhang,et al.  New process for the production of branched-chain fatty acids , 2004 .

[36]  David J. Cole-Hamilton Polyethylen aus der Natur , 2010 .

[37]  Wei Zhang,et al.  Polyols and Polyurethanes from Hydroformylation of Soybean Oil , 2002 .

[38]  M. Meier,et al.  Cross-metathesis reactions of allyl chloride with fatty acid methyl esters : Efficient synthesis of α,ω-difunctional chemical intermediates from renewable raw materials , 2009 .

[39]  Yongshang Lu,et al.  Ring-opening metathesis polymerization (ROMP) of norbornenyl-functionalized fatty alcohols , 2010 .

[40]  Markus Dierker,et al.  Surfactants from oleic, erucic and petroselinic acid: Synthesis and properties , 2010 .

[41]  C. Stevens,et al.  Undecylenic acid: a valuable and physiologically active renewable building block from castor oil. , 2009, ChemSusChem.

[42]  M. Meier,et al.  Acyclic diene metathesis with a monomer from renewable resources: control of molecular weight and one-step preparation of block copolymers. , 2008, ChemSusChem.

[43]  M. Schneider,et al.  Plant-oil-based lubricants and hydraulic fluids , 2006 .

[44]  M. Beller A personal view on homogeneous catalysis and its perspectives for the use of renewables , 2008 .

[45]  R. Grubbs,et al.  Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. , 1999, Organic letters.

[46]  Zhenrong Li,et al.  Catalytic Synthesis of Carbonated Soybean Oil , 2008 .

[47]  S. Erhan,et al.  Synthesis of cyclic acetals (ketals) from oleochemicals using a solvent free method , 2008 .

[48]  U. Bornscheuer,et al.  An improved assay for the determination of phospholipase C activity , 2007 .

[49]  W. Araia,et al.  Performance of Vernonia galamensis as a potential and viable industrial oil plant in Eritrea: Yield and oil content -1 , 2009 .

[50]  N. Ravasio,et al.  An efficient ring opening reaction of methyl epoxystearate promoted by synthetic acid saponite clays , 2009 .

[51]  N. Ravasio,et al.  Titanium–Silica Catalysts for the Production of Fully Epoxidised Fatty Acid Methyl Esters , 2008 .

[52]  R. Grubbs,et al.  The development of L2X2Ru=CHR olefin metathesis catalysts: an organometallic success story. , 2001, Accounts of chemical research.

[53]  Wim Soetaert,et al.  Microbial production and application of sophorolipids , 2007, Applied Microbiology and Biotechnology.

[54]  G. Feldmann,et al.  Fatty acids linked with dyes and corrosion inhibitors , 2001 .

[55]  H. Tokgöz,et al.  Oil and Conjugated Linolenic Acid Contents of Seeds from Important Pomegranate Cultivars (Punica granatum L.) Grown in Turkey , 2009 .

[56]  M. Dubé,et al.  The use of biodiesel as a green polymerization solvent at elevated temperatures , 2008 .

[57]  J. Metzger,et al.  Alkylation of alkenes: ethylaluminum sesquichloride-mediated hydro-alkyl additions with alkyl chloroformates and di-tert-butylpyrocarbonate. , 2004, Journal of the American Chemical Society.

[58]  Salmiah Ahmad,et al.  Palm oil and palm kernel oil as raw materials for basic oleochemicals and biodiesel , 2007 .

[59]  K. Clausen Enzymatic oil‐degumming by a novel microbial phospholipase , 2001 .

[60]  M. Meier,et al.  Use of a renewable and degradable monomer to study the temperature-dependent olefin isomerization during ADMET polymerizations. , 2009, Journal of the American Chemical Society.

[61]  W. Butte,et al.  Esters of calendula oil and tung oil as reactive diluents for alkyd resins , 2010 .

[62]  W. R. Jackson,et al.  High conversion and productive catalyst turnovers in cross-metathesis reactions of natural oils with 2-butene , 2006 .

[63]  D. Cole-Hamilton Nature's polyethylene. , 2010, Angewandte Chemie.

[64]  B. Moser,et al.  Preparation and evaluation of a series of α‐hydroxy ethers from 9,10‐epoxystearates , 2007 .

[65]  James M Clomburg,et al.  Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology , 2010, Applied Microbiology and Biotechnology.

[66]  F. Shahidi,et al.  Lipase-assisted concentration of n-3 polyunsaturated fatty acids in acylglycerols from marine oils , 1998 .

[67]  M. Meier,et al.  Acyclic Triene Metathesis Oligo‐ and Polymerization of High Oleic Sun Flower Oil , 2010 .

[68]  M. Meier,et al.  Metathesis as a versatile tool in oleochemistry , 2008 .

[69]  R. Crabtree Organometallic alkane CH activation , 2004 .

[70]  Cédric Fischmeister,et al.  Ethenolysis of methyl oleate in room-temperature ionic liquids. , 2008, ChemSusChem.

[71]  J. Bercaw,et al.  Understanding and exploiting C–H bond activation , 2002, Nature.

[72]  Geoffrey Hills,et al.  Industrial use of lipases to produce fatty acid esters , 2003 .

[73]  U. Prüße,et al.  Oxidation of a tensidic alcohol to its corresponding carboxylic acid via Au catalysts , 2010 .

[74]  J. Metzger,et al.  Synthesis of New Heterocyclic Fatty Compounds , 2003 .

[75]  E. Sakuradani,et al.  Single cell oil production by Mortierella alpina. , 2009, Journal of biotechnology.

[76]  A. Behr,et al.  Transition‐metal trifluoromethane‐sulphonates‐recyclable catalysts for the synthesis of branched fatty derivatives by Diels‐Alder reactions at unsaturated fatty esters , 2000 .

[77]  Hans J. Schäfer,et al.  Neue Synthesen mit Ölen und Fetten als nachwachsende Rohstoffe für die chemische Industrie , 2000 .

[78]  D. Ohlmann,et al.  Silver triflate-catalysed synthesis of ?-lactones from fatty acids , 2010 .

[79]  R. Mullen,et al.  Engineering plant oils as high-value industrial feedstocks for biorefining: the need for underpinning cell biology research. , 2007, Physiologia plantarum.

[80]  Colin Ratledge,et al.  Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. , 2004, Biochimie.

[81]  S. Warwel,et al.  Polyesters by lipase‐catalyzed polycondensation of unsaturated and epoxidized long‐chain α,ω‐dicarboxylic acid methyl esters with diols , 2001 .

[82]  J. Metzger,et al.  Fat‐Derived Aziridines and Their N‐Substituted Derivatives: Biologically Active Compounds Based on Renewable Raw Materials , 2003 .

[83]  A. Steinbüchel,et al.  Bakterielle Acyltransferasen als Alternative für lipasekatalysierte Acylierungen zur Produktion von Oleochemikalien und Brennstoffen , 2008 .

[84]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[85]  Biermann,et al.  Friedel-Crafts Alkylation of Alkenes: Ethylaluminum Sesquichloride Induced Alkylations with Alkyl Chloroformates. , 1999, Angewandte Chemie.

[86]  D. Cole-Hamilton,et al.  Dicarboxylic acid esters from the carbonylation of unsaturated esters under mild conditions , 2005 .

[87]  G. Haraldsson,et al.  Lipase selectivity toward fatty acids commonly found in fish oil , 2004 .

[88]  F. Gunstone Imports by commodity and by country , 2008 .

[89]  A. Steinbüchel,et al.  Bacterial acyltransferases as an alternative for lipase-catalyzed acylation for the production of oleochemicals and fuels. , 2008, Angewandte Chemie.

[90]  Timothy S. Ham,et al.  Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. , 2008, Current opinion in biotechnology.

[91]  Yinghuai Zhu,et al.  Magnetic Nanoparticle Supported Second Generation Hoveyda–Grubbs Catalyst for Metathesis of Unsaturated Fatty Acid Esters , 2009 .

[92]  M. Pagliaro,et al.  From glycerol to value-added products. , 2007, Angewandte Chemie.

[93]  U. Bornscheuer,et al.  High level expression of a recombinant phospholipase C from Bacillus cereus in Bacillus subtilis , 2007, Applied Microbiology and Biotechnology.

[94]  F. Shahidi,et al.  Concentration of ω-3 polyunsaturated fatty acids of marine oils using Candida cylindracea lipase: Optimization of reaction conditions , 1998 .

[95]  T. Hirth,et al.  Fermentative Herstellung der α,ω-Dicarbonsäure 1,18-Oktadecendisäure als Grundbaustein für biobasierte Kunststoffe , 2009 .

[96]  M. Meier,et al.  Phosphorus-containing renewable polyester-polyols via ADMET polymerization : synthesis, functionalization, and radical crosslinking , 2010 .

[97]  C. Nakamura,et al.  Metabolic engineering for the microbial production of 1,3-propanediol. , 2003, Current opinion in biotechnology.

[98]  M. Reuss,et al.  Production of sophorolipids from whey: development of a two-stage process with Cryptococcus curvatus ATCC 20509 and Candida bombicola ATCC 22214 using deproteinized whey concentrates as substrates , 1999, Applied Microbiology and Biotechnology.

[99]  H. Henry Lamb,et al.  Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids , 2010 .

[100]  M. Meier,et al.  Cross-metathesis of oleyl alcohol with methyl acrylate: optimization of reaction conditions and comparison of their environmental impact , 2008 .

[101]  S. Harutyunyan,et al.  A Highly Efficient Ruthenium Catalyst for Metathesis Reactions , 2002 .

[102]  Jürgen O. Metzger,et al.  10 Jahre nach „Rio“ – Konzepte zum Beitrag der Chemie zu einer nachhaltigen Entwicklung , 2002 .

[103]  R. Grubbs,et al.  Increased ring closing metathesis activity of ruthenium-based olefin metathesis catalysts coordinated with imidazolin-2-ylidene ligands , 1999 .

[104]  J. Dubois,et al.  Renewable materials as precursors of linear nitrile-acid derivatives via cross-metathesis of fatty esters and acids with acrylonitrile and fumaronitrile , 2009 .

[105]  Jose Iglesias,et al.  Heterogeneous acid catalysts for biodiesel production: current status and future challenges , 2009 .

[106]  Rainer Kalscheuer,et al.  Microdiesel: Escherichia coli engineered for fuel production. , 2006, Microbiology.

[107]  Anders S Carlsson,et al.  High-value oils from plants. , 2008, The Plant journal : for cell and molecular biology.

[108]  W. R. Jackson,et al.  Preparation of terminal oxygenates from renewable natural oils by a one-pot metathesis–isomerisation–methoxycarbonylation–transesterification reaction sequence , 2006 .

[109]  J. Metzger,et al.  Regioselective Cationic 1,2‐ and 1,4‐Additions Forming Carbon−Carbon Bonds to Methyl Santalbate, a Conjugated Enyne , 2000 .

[110]  G. Lu,et al.  Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. , 2008, Chemical Society reviews.

[111]  M. Brookhart,et al.  Ethylene Polymerization and Ethylene/Methyl 10-Undecenoate Copolymerization Using Nickel(II) and Palladium(II) Complexes Derived from a Bulky P,O Chelating Ligand , 2002 .

[112]  W. Soetaert,et al.  Knocking out the MFE-2 gene of Candida bombicola leads to improved medium-chain sophorolipid production. , 2009, FEMS yeast research.

[113]  A. Behr,et al.  The refinement of renewable resources: new important derivatives of fatty acids and glycerol. , 2010 .

[114]  K. Ghebreyessus,et al.  Isomerizing-Hydroboration of the Monounsaturated Fatty Acid Ester Methyl Oleate† , 2006 .

[115]  H. Schäfer,et al.  Conversion of oleic acid to 17‐ and 18‐substituted stearic acid derivatives by way of the „acetylene zipper”︁ , 1991 .

[116]  Andrew Guo,et al.  The hydroformylation of vegetable oils and model compounds by ligand modified rhodium catalysis , 2002 .

[117]  Y. Ikushima,et al.  Catalytic Oxidation of Oleic Acid in Supercritical Carbon Dioxide Media with Molecular Oxygen , 2009 .

[118]  U. Bornscheuer,et al.  Properties and biotechnological methods to produce lipids containing conjugated linoleic acid , 2008 .

[119]  Theo Mang,et al.  Lubricant base fluids based on renewable raw materials: Their catalytic manufacture and modification , 2001 .

[120]  Robert Kourist,et al.  Protein engineering and discovery of lipases , 2010 .

[121]  U. Bornscheuer,et al.  Lipase-catalyzed synthesis of structured triacylglycerides from 1,3-diacylglycerides , 2004 .

[122]  K. Wagener,et al.  Recent advances in ADMET polymerization , 2005 .

[123]  R. Gross,et al.  Two-step biocatalytic route to biobased functional polyesters from omega-carboxy fatty acids and diols. , 2010, Biomacromolecules.

[124]  R. Gross,et al.  Sophorolipid biosynthesis by Candida bombicola from industrial fatty acid residues. , 2007 .

[125]  M. Infante,et al.  Biocompatible surfactants from renewable hydrophiles , 2010 .

[126]  Jürgen O. Metzger,et al.  FATS AND OILS AS RENEWABLE FEEDSTOCK FOR CHEMISTRY , 2009 .

[127]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[128]  E. Cahoon,et al.  Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux. , 2007, Current opinion in plant biology.

[129]  T. Isbell,et al.  Synthesis of δ-stearolactone from oleic acid , 2000 .

[130]  S. Raghavan,et al.  Sugar-derived phase-selective molecular gelators as model solidifiers for oil spills. , 2010, Angewandte Chemie.

[131]  A. Weiss Selective Microbial Oxidations in Industry: Oxidations of Alkanes, Fatty Acids, Heterocyclic Compounds, Aromatic Compounds and Glycerol Using Native or Recombinant Microorganisms , 2007 .

[132]  A. Hoveyda,et al.  Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts , 2000 .

[133]  M. Meier,et al.  Cross-metathesis of fatty acid derivatives with methyl acrylate: renewable raw materials for the chemical industry , 2007 .

[134]  B. Schmidt Catalysis at the Interface of Ruthenium Carbene and Ruthenium Hydride Chemistry: Organometallic Aspects and Applications to Organic Synthesis , 2004 .

[135]  Alberto Nuñez,et al.  Zeolite-catalyzed isomerization of oleic acid to branched-chain isomers* , 2007 .

[136]  M. R. Kessler,et al.  Fabrication and Properties of Vegetable‐Oil‐Based Glass Fiber Composites by Ring‐Opening Metathesis Polymerization , 2008 .

[137]  R. Larock,et al.  Model studies and the ADMET polymerization of soybean oil , 2002 .

[138]  M. Meier,et al.  Acyclic Triene Metathesis Polymerization with Chain-Stoppers : Molecular Weight Control in the Synthesis of Branched Polymers , 2008 .

[139]  M. Kunz,et al.  Copolymerization of Ethylene with ω‐Unsaturated Fatty Acid Methyl Esters Using a Cationic Palladium Complex , 2001 .

[140]  A. Behr,et al.  Hydroaminomethylation in thermomorphic solvent systems , 2005 .

[141]  R. Gonzalez,et al.  The path to next generation biofuels: successes and challenges in the era of synthetic biology , 2010, Microbial cell factories.

[142]  D. Murzin,et al.  Decarboxylation of fatty acids over Pd supported on mesoporous carbon , 2010 .

[143]  W. Butte,et al.  Regio- and Stereoselective Diels-Alder Additions of Maleic Anhydride to Conjugated Triene Fatty Acid Methyl Esters , 2007 .

[144]  Joseph W. Ziller,et al.  A Series of Well‐Defined Metathesis Catalysts–Synthesis of [RuCl2(CHR′)(PR3)2] and Its Reactions , 1995 .

[145]  Jürgen O. Metzger,et al.  Synthesis of alkyl-branched fatty acids , 2008 .

[146]  C. Boelhouwer,et al.  Metathesis of unsaturated fatty acid esters by a homogeneous tungsten hexachloride–tetramethyltin catalyst , 1972 .

[147]  M. Meier,et al.  Studying and Suppressing Olefin Isomerization Side Reactions During ADMET Polymerizations. , 2010, Macromolecular rapid communications.

[148]  M. Meier,et al.  Fatty acid derived phosphorus‐containing polyesters via acyclic diene metathesis polymerization , 2009 .

[149]  Uwe Schneidewind,et al.  10 Years after Rio—Concepts on the Contribution of Chemistry to a Sustainable Development , 2002 .

[150]  Andreas Martin,et al.  Oxidation of unsaturated fatty acid derivatives and vegetable oils , 2008 .

[151]  U. Schuchardt,et al.  Alumina-catalyzed epoxidation of unsaturated fatty esters with hydrogen peroxide , 2007 .

[152]  D. Murzin,et al.  Transforming triglycerides and fatty acids into biofuels. , 2009, ChemSusChem.

[153]  N. Prevost,et al.  Synthesis and Structural Analysis of Branched-Chain Derivatives of Methyl Oleate , 2008 .

[154]  Michèle Sindt,et al.  The ultrasound-assisted oxidative scission of monoenic fatty acids by ruthenium tetroxide catalysis: influence of the mixture of solvents. , 2009, Ultrasonics sonochemistry.

[155]  W. Friedt,et al.  New Syntheses with Oils and Fats as Renewable Raw Materials for the Chemical Industry , 2000 .

[156]  R. Larock,et al.  Rubbery Thermosets by Ring‐Opening Metathesis Polymerization of a Functionalized Castor Oil and Cyclooctene , 2007 .

[157]  Arno Behr,et al.  Improved utilisation of renewable resources: New important derivatives of glycerol , 2008 .

[158]  H. Schäfer,et al.  Electrolysis for the benign conversion of renewable feedstocks , 2007 .

[159]  R. Grubbs,et al.  Prevention of undesirable isomerization during olefin metathesis. , 2005, Journal of the American Chemical Society.

[160]  Aloys Hüttermann,et al.  Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas , 2009, Naturwissenschaften.

[161]  J. Falbe,et al.  Natrliche Fette und le nachwachsende Rohstoffe fr die chemische Industrie , 1988 .

[162]  Grigor B. Bantchev,et al.  Free radical addition of butanethiol to vegetable oil double bonds. , 2009, Journal of agricultural and food chemistry.

[163]  Grant S. Forman,et al.  Metathesis of renewable unsaturated fatty acid esters catalysed by a phoban-indenylidene ruthenium catalyst , 2006 .

[164]  Marco Eissen,et al.  Concepts on the contribution of chemistry to a sustainable development. Renewable raw materials , 2004 .

[165]  S. Mecking,et al.  Linear semicrystalline polyesters from fatty acids by complete feedstock molecule utilization. , 2010, Angewandte Chemie.

[166]  Stanislav Miertus,et al.  Catalytic applications in the production of biodiesel from vegetable oils. , 2009, ChemSusChem.

[167]  W. Kaminsky,et al.  New polymers by copolymerization of olefins with bio oil components , 2008 .

[168]  M. Meier Metathesis with Oleochemicals: New Approaches for the Utilization of Plant Oils as Renewable Resources in Polymer Science , 2009 .

[169]  F. Diekert,et al.  Renewable Resources , 1941, Science.

[170]  M. Meier,et al.  A design-of-experiments approach for the optimization and understanding of the cross-metathesis reaction of methyl ricinoleate with methyl acrylate. , 2009, ChemSusChem.

[171]  Ulrich Schörken,et al.  Lipid biotechnology: Industrially relevant production processes , 2009 .

[172]  Z. Petrović,et al.  Kinetics of the hydroformylation of soybean oil by ligand-modified homogeneous rhodium catalysis , 2002 .

[173]  R. Larock,et al.  Novel thermosets obtained by the ring‐opening metathesis polymerization of a functionalized vegetable oil and dicyclopentadiene , 2009 .

[174]  M. Schneider,et al.  Enzymatic esterification of glycerol I. Lipase-catalyzed synthesis of regioisomerically pure 1,3-sn-diacylglycerols , 1992 .

[175]  Wei Zhang,et al.  Vegetable oil‐based triols from hydroformylated fatty acids and polyurethane elastomers , 2010 .

[176]  H. Schäfer,et al.  Cleavage of olefinic double bonds by mediated anodic oxidation , 2003 .

[177]  S. Mecking,et al.  Renewable resource-based poly(dodecyloate) by carbonylation polymerization. , 2009, Chemical communications.

[178]  D. Craft,et al.  Identification and Characterization of the CYP52 Family of Candida tropicalis ATCC 20336, Important for the Conversion of Fatty Acids and Alkanes to α,ω-Dicarboxylic Acids , 2003, Applied and Environmental Microbiology.

[179]  U. Bornscheuer,et al.  Highly selective synthesis of 1,3-oleoyl-2-palmitoylglycerol by lipase catalysis. , 1999, Biotechnology and bioengineering.

[180]  J. Metzger,et al.  Friedel‐Crafts‐Alkylierung von Alkenen: Ethylaluminiumsesquichlorid‐induzierte Alkylierungen mit Chlorameisensäurealkylestern , 1999 .

[181]  M. Dubé,et al.  Solution polymerization of styrene using biodiesel as a solvent: Effect of biodiesel feedstock , 2009 .

[182]  J. Ogawa,et al.  Improved production of various polyunsaturated fatty acids through filamentous fungus Mortierella alpina breeding , 2009, Applied Microbiology and Biotechnology.