Toward Optimal Performance and In‐Depth Understanding of Spinel Li4Ti5O12 Electrodes through Phase Field Modeling

Computational modeling is vital for the fundamental understanding of processes in Li-ion batteries. However, capturing nanoscopic to mesoscopic phase thermodynamics and kinetics in the solid electrode particles embedded in realistic electrode morphologies is challenging. In particular for electrode materials displaying a first order phase transition, such as LiFePO$_4$, graphite and spinel Li$_4$Ti$_5$O$_{12}$ (LTO), predicting the macroscopic electrochemical behavior requires an accurate physical model. Herein, we present a thermodynamic phase field model for Li-ion insertion in LTO which captures the performance limitations presented in literature as a function of all relevant electrode parameters. The phase stability in the model is based on ab-initio DFT calculations and the Li-ion diffusion parameters on nanoscopic NMR measurements of Li-ion mobility, resulting in a parameter free model. The direct comparison with prepared electrodes shows good agreement over three orders of magnitude in the discharge current. Overpotentials associated with the various charge transport processes, as well as the active particle fraction relevant for local hotspots in batteries, are analyzed. It is demonstrated which process limits the electrode performance under a variety of realistic conditions, providing comprehensive understanding of the nanoscopic to microscopic properties. These results provide concrete directions towards the design of optimally performing LTO electrodes.

[1]  M. Bazant,et al.  Li Intercalation into Graphite: Direct Optical Imaging and Cahn-Hilliard Reaction Dynamics. , 2016, The journal of physical chemistry letters.

[2]  Martin Ebner,et al.  Tortuosity Anisotropy in Lithium‐Ion Battery Electrodes , 2014 .

[3]  M. Bazant,et al.  Multiphase Porous Electrode Theory , 2017, 1702.08432.

[4]  B. Scrosati,et al.  High-Resolution In-Situ Structural Measurements of the Li4/3Ti5/3O4 “Zero-Strain” Insertion Material , 2002 .

[5]  Zi‐Feng Ma,et al.  Challenges of Spinel Li4Ti5O12 for Lithium‐Ion Battery Industrial Applications , 2017 .

[6]  C. Chidsey,et al.  Free Energy and Temperature Dependence of Electron Transfer at the Metal-Electrolyte Interface , 1991, Science.

[7]  Yan‐Bing He,et al.  Combining Fast Li-Ion Battery Cycling with Large Volumetric Energy Density: Grain Boundary Induced High Electronic and Ionic Conductivity in Li4Ti5O12 Spheres of Densely Packed Nanocrystallites , 2015 .

[8]  Martin Z. Bazant,et al.  Imposed currents in galvanic cells , 2009 .

[9]  T. Akita,et al.  Two-phase separation in a lithiated spinel Li4Ti5O12 crystal as confirmed by electron energy-loss spectroscopy , 2014 .

[10]  Jonathan P. Wright,et al.  Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling , 2015, Nature Communications.

[11]  Young-Min Choi,et al.  Does Li4Ti5O12 need carbon in lithium ion batteries? Carbon-free electrode with exceptionally high electrode capacity. , 2012, Chemical communications.

[12]  L. Nazar,et al.  Direct synthesis of nanocrystalline Li0.90FePO4: observation of phase segregation of anti-site defects on delithiation , 2011 .

[13]  Martin Z. Bazant,et al.  Phase Transformation Dynamics in Porous Battery Electrodes , 2014, 1401.7072.

[14]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[15]  T. Eckl,et al.  Lithium diffusion in the spinel phase Li4Ti5O12 and in the rocksalt phase Li7Ti5O12 of lithium titanate from first principles , 2014 .

[16]  Tao Zheng,et al.  An Asymmetric Hybrid Nonaqueous Energy Storage Cell , 2001 .

[17]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[18]  M. Bazant,et al.  Explaining key properties of lithiation in TiO$_2$-anatase Li-ion battery electrodes using phase-field modelling , 2017, 1706.09686.

[19]  Zongping Shao,et al.  A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives , 2015 .

[20]  Volker Hennige,et al.  Small Change—Great Effect: Steep Increase of Li Ion Dynamics in Li4Ti5O12 at the Early Stages of Chemical Li Insertion , 2015 .

[21]  Daniel A. Cogswell,et al.  Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge. , 2011, Nano letters.

[22]  Martin Ebner,et al.  Validity of the Bruggeman relation for porous electrodes , 2013 .

[23]  Tingfeng Yi,et al.  Recent development and application of Li4Ti5O12 as anode material of lithium ion battery , 2010 .

[24]  Ali Ghorbani Kashkooli,et al.  Nano-particle size effect on the performance of Li4Ti5O12 spinel , 2016 .

[25]  Marnix Wagemaker,et al.  The Role of Surface and Interface Energy on Phase Stability of Nanosized Insertion Compounds , 2009, Advanced materials.

[26]  Martin Z Bazant,et al.  Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. , 2012, Accounts of chemical research.

[27]  H. Zhong,et al.  Facile synthesis of nanostructured Li4Ti5O12/PEDOT:PSS composite as anode material for lithium-ion batteries , 2016 .

[28]  Henghui Zhou,et al.  Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life , 2014 .

[29]  Martin Z. Bazant,et al.  Nonequilibrium Thermodynamics of Porous Electrodes , 2012, 1204.2934.

[30]  Martin Z. Bazant,et al.  Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles , 2016, Science.

[31]  Young-Sang Yu,et al.  Visualization of the Phase Propagation within Carbon-Free Li4Ti5O12 Battery Electrodes , 2016 .

[32]  Werner Weppner,et al.  Evidence of Two‐Phase Formation upon Lithium Insertion into the Li1.33Ti1.67 O 4 Spinel , 1999 .

[33]  Esther S. Takeuchi,et al.  Multi-Stage Structural Transformations in Zero-Strain Lithium Titanate Unveiled by in Situ X-ray Absorption Fingerprints. , 2017, Journal of the American Chemical Society.

[34]  Martin Z. Bazant,et al.  Phase Separation Dynamics in Isotropic Ion-Intercalation Particles , 2013, SIAM J. Appl. Math..

[35]  D. Murphy,et al.  The crystal structures of the lithium-inserted metal oxides Li0.5TiO2 anatase, LiTi2O4 spinel, and Li2Ti2O4 , 1984 .

[36]  Y. Chiang,et al.  Electronic Conductivity in the Li4/3Ti5/3O4–Li7/3Ti5/3O4 System and Variation with State‐of‐Charge as a Li Battery Anode , 2013 .

[37]  Y. Meng,et al.  Elucidating the Phase Transformation of Li4Ti5O12 Lithiation at the Nanoscale. , 2016, ACS nano.

[38]  K. Kanamura,et al.  Li+ ion diffusion in Li4Ti5O12 thin film electrode prepared by PVP sol–gel method , 2004 .

[39]  X. Lin,et al.  Progress of Li4Ti5O12 anode material for lithium ion batteries , 2014 .

[40]  Bo Cui,et al.  Advances in spinel Li4Ti5O12 anode materials for lithium-ion batteries , 2015 .

[41]  J. R. Heringa,et al.  The Fine Line between a Two‐Phase and Solid‐Solution Phase Transformation and Highly Mobile Phase Interfaces in Spinel Li4+xTi5O12 , 2017 .

[42]  Karim Zaghib,et al.  Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries , 1999 .

[43]  Jonathan P. Wright,et al.  Rate-induced solubility and suppression of the first-order phase transition in olivine LiFePO4. , 2014, Nano letters.

[44]  Venkat Srinivasan,et al.  Optimization of Lithium Titanate Electrodes for High-Power Cells , 2006 .

[45]  M. Wagemaker,et al.  A Kinetic Two‐Phase and Equilibrium Solid Solution in Spinel Li4+xTi5O12 , 2006 .

[46]  Wei Lv,et al.  Gassing in Li4Ti5O12-based batteries and its remedy , 2012, Scientific Reports.

[47]  Lin Gu,et al.  Lithium Storage in Li4Ti5O12 Spinel: The Full Static Picture from Electron Microscopy , 2012, Advanced materials.

[48]  Bo B. Iversen,et al.  Controlling Size, Crystallinity, and Electrochemical Performance of Li4Ti5O12 Nanocrystals , 2013 .

[49]  Feng Li,et al.  Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates , 2012, Proceedings of the National Academy of Sciences.

[50]  W. Craig Carter,et al.  Electrochemically Driven Phase Transitions in Insertion Electrodes for Lithium-Ion Batteries: Examples in Lithium Metal Phosphate Olivines , 2010 .

[51]  Peng Bai,et al.  Simple formula for Marcus–Hush–Chidsey kinetics , 2014, 1407.5370.

[52]  Feiyu Kang,et al.  A robust strategy for crafting monodisperse Li4Ti5O12 nanospheres as superior rate anode for lithium ion batteries , 2016 .

[53]  Karena W. Chapman,et al.  Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes , 2014, Science.

[54]  Yiyang Li,et al.  Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. , 2014, Nature materials.

[55]  K. Zaghib,et al.  Safe and fast-charging Li-ion battery with long shelf life for power applications , 2011 .

[56]  Ilias Belharouak,et al.  Performance Degradation and Gassing of Li4Ti5O12/LiMn2O4 Lithium-Ion Cells , 2012 .

[57]  Charles Delacourt,et al.  Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy , 2006 .

[58]  Tingfeng Yi,et al.  Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries , 2015 .

[59]  B. Scrosati,et al.  Compatibility of the Py24TFSI–LiTFSI ionic liquid solution with Li4Ti5O12 and LiFePO4 lithium ion battery electrodes , 2009 .

[60]  Marnix Wagemaker,et al.  Dynamic solubility limits in nanosized olivine LiFePO4. , 2011, Journal of the American Chemical Society.

[61]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[62]  T. Akita,et al.  Characterization of two phase distribution in electrochemically-lithiated spinel Li4Ti5O12 secondary particles by electron energy-loss spectroscopy , 2013 .

[63]  N. Takami,et al.  Lithium Diffusion in Li4/3Ti5/3O4 Particles during Insertion and Extraction , 2011 .

[64]  C. Delmas,et al.  Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. , 2008, Nature materials.

[65]  P. Heitjans,et al.  Microscopic Li self-diffusion parameters in the lithiated anode material Li4 + xTi5O12 (0 < or = x < or = 3) measured by 7Li solid state NMR. , 2007, Physical chemistry chemical physics : PCCP.

[66]  Jeff Dahn,et al.  Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4 , 1989 .

[67]  Takashi Ida,et al.  Isolation of Solid Solution Phases in Size‐Controlled LixFePO4 at Room Temperature , 2009 .

[68]  Francesco De Angelis,et al.  Review on recent progress of nanostructured anode materials for Li-ion batteries , 2014 .

[69]  P. Heitjans,et al.  Ultraslow Li diffusion in spinel-type structured Li4Ti5O12 - a comparison of results from solid state NMR and impedance spectroscopy. , 2007, Physical chemistry chemical physics : PCCP.

[70]  Minsheng Lei,et al.  Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel , 2007 .

[71]  M. Wagemaker,et al.  Li-ion diffusion in the equilibrium nanomorphology of spinel Li(4+x)Ti(5)O(12). , 2009, The journal of physical chemistry. B.

[72]  Peng Bai,et al.  Charge transfer kinetics at the solid–solid interface in porous electrodes , 2014, Nature Communications.

[73]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[74]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[75]  Wolfgang Dreyer,et al.  The thermodynamic origin of hysteresis in insertion batteries. , 2010, Nature materials.

[76]  M. Fátima Vaz,et al.  Grain size distribution: The lognormal and the gamma distribution functions , 1988 .

[77]  Daniel A. Cogswell,et al.  Theory of coherent nucleation in phase-separating nanoparticles. , 2013, Nano letters.

[78]  Daniel A. Cogswell,et al.  Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. , 2011, ACS nano.

[79]  J. Akimoto,et al.  Single crystal growth and structure refinement of Li4Ti5O12 , 2008 .

[80]  Alex C. MacRae,et al.  Effect of Surface Modification on Nano-Structured LiNi(0.5)Mn(1.5)O4 Spinel Materials. , 2015, ACS applied materials & interfaces.

[81]  Won‐Hee Ryu,et al.  Multi-layer electrode with nano-Li4Ti5O12 aggregates sandwiched between carbon nanotube and graphene networks for high power Li-ion batteries , 2014, Scientific Reports.

[82]  M. Wagemaker,et al.  Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion. , 2012, ACS nano.

[83]  Damian Burch,et al.  Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. , 2009, Nano letters.

[84]  Milo R. Dorr,et al.  Anisotropic Phase Boundary Morphology in Nanoscale Olivine Electrode Particles , 2011 .

[85]  A. Jalbout,et al.  LiFePO4 as an optimum power cell material , 2009 .

[86]  C. Ouyang,et al.  Lithium ion diffusion in Li4+xTi5O12: From ab initio studies , 2011 .

[87]  Ibrahim Dincer,et al.  Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles , 2016 .

[88]  M. Bazant,et al.  Intercalation Kinetics in Multiphase-Layered Materials , 2017, 1701.08858.

[89]  A. Deschanvres,et al.  Mise en evidence et etude cristallographique d'une nouvelle solution solide de type spinelle Li1+xTi2−xO4 0 ⩽ x ⩽ 0, 333 , 1971 .

[90]  D. Murphy,et al.  Ternary LixTiO2 phases from insertion reactions , 1983 .

[91]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[92]  I. Saadoune,et al.  Influence of the synthesis method on the electrochemical properties of the Li4Ti5O12 spinel in Li-half and Li-ion full-cells. A systematic comparison , 2013 .

[93]  Daniel Schröder,et al.  Understanding the fundamentals of redox mediators in Li-O2 batteries: a case study on nitroxides. , 2015, Physical chemistry chemical physics : PCCP.

[94]  Venkat Srinivasan,et al.  Optimizing the Performance of Lithium Titanate Spinel Paired with Activated Carbon or Iron Phosphate , 2008 .

[95]  Xiaofeng Qian,et al.  In situ observation of random solid solution zone in LiFePO₄ electrode. , 2014, Nano letters.

[96]  D. V. Safronov,et al.  Lithium intercalation and deintercalation processes in Li4Ti5O12 and LiFePO4 , 2011, Inorganic Materials.

[97]  Olle Heinonen,et al.  Miscibility Gap Closure, Interface Morphology, and Phase Microstructure of 3D Li(x)FePO4 Nanoparticles from Surface Wetting and Coherency Strain. , 2015, ACS nano.

[98]  Templated spinel Li4Ti5O12 Li-ion battery electrodes combining high rates with high energy density , 2013 .

[99]  Robert Kostecki,et al.  Mechanism of Phase Propagation During Lithiation in Carbon‐Free Li4Ti5O12 Battery Electrodes , 2013 .

[100]  T. Akita,et al.  Atomic and electronic structures of Li4Ti5O12/Li7Ti5O12 (001) interfaces by first-principles calculations , 2014, Journal of Materials Science.

[101]  J. Pereira‐Ramos,et al.  Electrochemical properties of sol–gel Li4/3Ti5/3O4 , 1999 .

[102]  Qiang Wang,et al.  Enhancing the electrochemistry performance of Li4Ti5O12 for Li-ion battery anodes by a sol–gel assisted molten salt method and graphene modification , 2016 .

[103]  Ladislav Kavan,et al.  Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion , 2002 .

[104]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .