Impact of multiangular information on empirical models to estimate canopy nitrogen concentration in mixed forest

Directional effects in remotely sensed reflectance data can influence the retrieval of plant biophysical and biochemical estimates. Previous studies have demonstrated that directional measurements contain added information that may increase the accuracy of estimated plant structural parameters. Because accurate biochemistry mapping is linked to vegetation structure, also models to estimate canopy nitrogen concentration (C N) may be improved indirectly from using multiangular data. Hyperspectral imagery with five different viewing zenith angles was acquired by the spaceborne CHRIS sensor over a forest study site in Switzerland. Fifteen canopy reflectance spectra corresponding to subplots of field-sampled trees were extracted from the preprocessed CHRIS images and subsequently two-term models were developed by regressing C N on four datasets comprising either original or continuum-removed reflectances. Consideration is given to the directional sensitivity of the C N estimation by generating regression models based on various combinations (n=15) of observation angles. The results of this study show that estimating canopy C N with only nadir data is not optimal irrespective of spectral data processing. Moreover adding multiangular information improves significantly the regression model fits and thus the retrieval of forest canopy biochemistry. These findings support the potential of multiangular Earth observations also for application-oriented ecological monitoring.

[1]  T. Eck,et al.  Characterization of the reflectance anisotropy of three boreal forest canopies in spring-summer , 1999 .

[2]  Nadine Gobron,et al.  Potential of multiangular spectral measurements to characterize land surfaces: Conceptual approach and exploratory application , 2000 .

[3]  Niklaus E. Zimmermann,et al.  Coupling Imaging Spectroscopy and Ecosystem Process Modelling - The Importance of Spatially Distributed Foliar Biochemical Concentration Estimates for Modelling NPP of Grassland Habitats , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[4]  Wolfram Mauser,et al.  Analyses of spaceborne hyperspectral and directional CHRIS data to deliver crop status for precision agriculture. , 2005 .

[5]  Paul J. Curran,et al.  Biochemical and reflectance variation throughout a Sitka spruce canopy , 2002 .

[6]  Wolfram Mauser,et al.  ASSIMILATION OF HYPERSPECTRAL MULTI-DIRECTIONAL CHRIS-DATA IN A COUPLED RADIATIVE TRANSFER AND CROP GROWTH MODEL , 2007 .

[7]  R. Richter,et al.  Correction of satellite imagery over mountainous terrain. , 1998, Applied optics.

[8]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[9]  Christopher B. Field,et al.  photosynthesis--nitrogen relationship in wild plants , 1986 .

[10]  R. Clark,et al.  Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression , 1999 .

[11]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[12]  S. A. Gersti,et al.  Building a Global Hotspot Ecology with Triana Data , 2003 .

[13]  Maria F. von Schoenermark,et al.  Reflection properties of vegetation and soil with a new BRDF database , 2004, SPIE Defense + Commercial Sensing.

[14]  T. Hassard,et al.  Applied Linear Regression , 2005 .

[15]  Felix Kienast,et al.  20th Century Carbon Budget of Forest Soils in the Alps , 1999, Ecosystems.

[16]  A. Gitelson,et al.  Remote sensing of chlorophyll concentration in higher plant leaves , 1998 .

[17]  L. Johnson,et al.  Spectrometric Estimation of Total Nitrogen Concentration in Douglas-Fir Foliage , 1996 .

[18]  P. Vitousek,et al.  Remote analysis of biological invasion and biogeochemical change. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Skidmore,et al.  Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features , 2004 .

[20]  Federico Magnani,et al.  Seasonal and interannual variability of photosynthetic capacity in relation to leaf nitrogen in a deciduous forest plantation in northern Italy. , 2005, Tree physiology.

[21]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.

[22]  James Barber,et al.  Red edge measurements for remotely sensing plant chlorophyll content , 1983 .

[23]  S. Ollinger,et al.  DIRECT ESTIMATION OF ABOVEGROUND FOREST PRODUCTIVITY THROUGH HYPERSPECTRAL REMOTE SENSING OF CANOPY NITROGEN , 2002 .

[24]  Thierry Toutin,et al.  Review article: Geometric processing of remote sensing images: models, algorithms and methods , 2004 .

[25]  Jens Nieke,et al.  Spatial PSF Nonuniformity Effects in Airborne Pushbroom Imaging Spectrometry Data , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[26]  John F. Muratore,et al.  Nitrogen and Lignin Control of Hardwood Leaf Litter Decomposition Dynamics , 1982 .

[27]  A. Atkinson Subset Selection in Regression , 1992 .

[28]  P. Reich,et al.  Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species , 1995, Oecologia.

[29]  Fuan Tsai,et al.  Derivative analysis of hyperspectral data , 1996, Remote Sensing.

[30]  David Lamb,et al.  PA—Precision Agriculture: Remote-Sensing and Mapping of Weeds in Crops , 2001 .

[31]  Philip Lewis,et al.  On the information content of multiple view angle (MVA) images , 1997 .

[32]  M. Schaepman,et al.  Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data , 2008 .

[33]  L. G. Mitten Branch-and-Bound Methods: General Formulation and Properties , 1970, Oper. Res..

[34]  J. R. Evans Photosynthesis and nitrogen relationships in leaves of C3 plants , 2004, Oecologia.

[35]  M. Minnaert The reciprocity principle in lunar photometry , 1941 .

[36]  J. Dungan,et al.  Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: Testing the Kokaly and Clark methodologies , 2001 .

[37]  K. Ranson,et al.  Predicting lidar measured forest vertical structure from multi-angle spectral data , 2006 .

[38]  Eric C. Brown de Colstoun,et al.  Improving global scale land cover classifications with multi-directional POLDER data and a decision tree classifier , 2006 .

[39]  P. Curran Imaging spectrometry for ecological applications , 2001 .

[40]  J. Heiskanen Tree cover and height estimation in the Fennoscandian tundra-taiga transition zone using multiangular MISR data , 2006 .

[41]  Gregory P. Asner,et al.  DESERTIFICATION IN CENTRAL ARGENTINA: CHANGES IN ECOSYSTEM CARBON AND NITROGEN FROM IMAGING SPECTROSCOPY , 2003 .

[42]  Michael A. Lefsky,et al.  Monitoring Forest Carbon Sequestration with Remote Sensing and Carbon Cycle Modeling , 2004, Environmental management.

[43]  David L.B. Jupp,et al.  Variance in bidirectional reflectance over discontinuous plant canopies , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[44]  Frédéric Baret,et al.  SPECTRA - Surface Processes and Ecosystem Changes Through Response Analysis , 2004 .

[45]  Richard A. Birdsey,et al.  Importance of Foliar Nitrogen Concentration to Predict Forest Productivity in the Mid-Atlantic Region , 2004 .

[46]  D. M. Gates,et al.  Spectral Properties of Plants , 1965 .

[47]  Thomas P. Minka,et al.  Gates , 2008, NIPS.

[48]  B. Yoder,et al.  Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales , 1995 .

[49]  Hao Chen,et al.  Forest information from hyperspectral sensing , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[50]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[51]  R. Myneni,et al.  Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data , 2000 .

[52]  Javrmila Solárová,et al.  On the economy of plant form and function. Proceedings of the Sixth Maria Moors Cabot Symposium, “Evolutionary Constraints on Primary Productivity: Adaptive Patterns of Energy Capture in Plants” , 1988, Biologia Plantarum.

[53]  Frederic Teston,et al.  The PROBA/CHRIS mission: a low-cost smallsat for hyperspectral multiangle observations of the Earth surface and atmosphere , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[54]  D. Sims,et al.  Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages , 2002 .

[55]  David J. Diner,et al.  Ascribing societal benefit to applied remote sensing data products: an examination of methodologies based on the Multi-angle Imaging SpectroRadiometer experience , 2007 .

[56]  J. Muller,et al.  New directions in earth observing: Scientific applications of multiangle remote sensing , 1999 .

[57]  D. Roberts,et al.  Using Imaging Spectroscopy to Study Ecosystem Processes and Properties , 2004 .

[58]  Olga Sykioti,et al.  Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations , 2010 .

[59]  A. Gitelson,et al.  Detection of Red Edge Position and Chlorophyll Content by Reflectance Measurements Near 700 nm , 1996 .

[60]  Mohammad Pessarakli,et al.  Handbook of Photosynthesis , 2005 .

[61]  Ernst Ott,et al.  Forests as protection from natural hazards , 2008 .

[62]  Roselyne Lacaze,et al.  Retrieval of vegetation clumping index using hot spot signatures measured by POLDER instrument , 2002 .

[63]  D. Diner,et al.  Canopy Structure Parameters Derived from Multi-Angular Remote Sensing Data for Terrestrial Carbon Studies , 2004 .

[64]  D. M. Moss,et al.  Analysis of Red Edge Spectral Characteristics and Total Chlorophyll Values for Red Spruce (Picea Rubens) Branch Segments from Mt. Moosilauke, Nh, Usa , 1991, [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management.

[65]  M. Schaepman,et al.  Space-based spectrodirectional measurements for the improved estimation of ecosystem variables , 2008, Canadian Journal of Remote Sensing.

[66]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[67]  F. R. Schiebe,et al.  Canopy attributes of desert grassland and transition communities derived from multiangular airborne imagery , 2003 .

[68]  S. Sandmeier,et al.  Physical Mechanisms in Hyperspectral BRDF Data of Grass and Watercress , 1998 .

[69]  Mary E. Martin,et al.  A plot-based method for rapid estimation of forest canopy chemistry , 2001 .

[70]  R. Lacaze,et al.  Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption , 2003 .

[71]  S. Ollinger,et al.  Net Primary Production and Canopy Nitrogen in a Temperate Forest Landscape: An Analysis Using Imaging Spectroscopy, Modeling and Field Data , 2005, Ecosystems.

[72]  F. Stuart Chapin,et al.  Seasonal Changes in Nitrogen and Phosphorus Fractions and Autumn Retranslocation in Evergreen and Deciduous Taiga Trees , 1983 .

[73]  I. Tichá,et al.  Handbook of Photosynthesis , 2018, Photosynthetica.

[74]  B. Rock,et al.  Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline , 1988 .

[75]  Mary E. Martin,et al.  HIGH SPECTRAL RESOLUTION REMOTE SENSING OF FOREST CANOPY LIGNIN, NITROGEN, AND ECOSYSTEM PROCESSES , 1997 .

[76]  Robert W. Wilson,et al.  Regressions by Leaps and Bounds , 2000, Technometrics.

[77]  S. Sandmeier,et al.  Structure Analysis and Classification of Boreal Forests Using Airborne Hyperspectral Brdf Data from Asas Imagery and Processing Techniques Have Also Been Used Potential for Combining Both High Spectral Resolution And , 2022 .

[78]  Ellis B. Cowling,et al.  ROLE OF NITROGEN IN WOOD DETERIORATION: AMOUNTS AND DISTRIBUTION OF NITROGEN IN TREE STEMS , 1966 .

[79]  B. Koetz,et al.  The influence of DEM characteristics on preprocessing of DAIS/ROSIS data in high altitude alpine terrain , 2003 .

[80]  K. Itten,et al.  Estimating foliar biochemistry from hyperspectral data in mixed forest canopy , 2008 .