Relaxation schemes for the multicomponent Euler system

We show that it is possible to construct a class of entropic schemes for the multicomponent Euler system describing a gas or fluid homogeneous mixture at thermodynamic equilibrium by applying a relaxation technique. A first order Chapman–Enskog expansion shows that the relaxed system formally converges when the relaxation frequencies go to the infinity toward a multicomponent Navier–Stokes system with the classical Fick and Newton laws, with a thermal diffusion which can be assimilated to a Soret effect in the case of a fluid mixture, and with also a pressure diffusion or a density diffusion respectively for a gas or fluid mixture. We also discuss on the link between the convexity of the entropies of each species and the existence of the Chapman–Enskog expansion.

[1]  Dellacherie Stéphane On the Wang Chang-Uhlenbeck equations , 2003 .

[2]  Florian de Vuyst Schémas non-conservatifs et schémas cinétiques pour la simulation numérique d'écoulements hypersoniques non visqueux en déséquilibre thermochimique , 1994 .

[3]  Jean-Pierre Croisille,et al.  Contribution à l'étude théorique et à l'approximation par éléments finis du système hyperbolique de la dynamique des gaz multidimensionnelle et multiespèces , 1990 .

[4]  B. Perthame,et al.  Relaxation of Energy and Approximate Riemann Solvers for General Pressure Laws in Fluid Dynamics , 1998 .

[5]  V. S. Vaidhyanathan,et al.  Transport phenomena , 2005, Experientia.

[6]  Philippe Montarnal,et al.  Real Gas Computation Using an Energy Relaxation Method and High-Order WENO Schemes , 1999 .

[7]  Sur le caractère entropique des schémas de relaxation appliqués à une équation d'état non classique , 2001 .

[8]  G. Uhlenbeck,et al.  Transport phenomena in polyatomic gases , 1951 .

[9]  Grégoire Allaire,et al.  A five-equation model for the simulation of interfaces between compressible fluids , 2002 .

[10]  P. Raviart,et al.  The Case of Multidimensional Systems , 2020, Applied Mathematical Sciences.

[11]  R. Abgrall,et al.  A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .

[12]  B. Després,et al.  Inégalité entropique pour un solveur conservatif du système de la dynamique des gaz en coordonnées de Lagrange , 1997 .

[13]  Arun In,et al.  Numerical Evaluation of an Energy Relaxation Method for Inviscid Real Fluids , 1999, SIAM J. Sci. Comput..

[14]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[15]  A. Zolotukhina,et al.  Thermal diffusion in gases , 1982 .

[16]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases : an account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases , 1954 .

[17]  B. Perthame,et al.  Boltzmann type schemes for gas dynamics and the entropy property , 1990 .

[18]  Frédéric Lagoutière,et al.  Modelisation mathematique et resolution numerique de problemes de fluides compressibles a plusieurs constituants , 2000 .

[19]  S. Osher,et al.  Computing interface motion in compressible gas dynamics , 1992 .