Strong approximation ofGSBV functions by piecewise smooth functions

SuntoSia Ω un aperto limitato diRn con frontiera localmente Lipschitziana. In questo lavoro si dimostra che le funzioniv∈SBV(Ω,Rm) con insieme di saltoSv essenzialmente chiuso e poliedrale che sono di classeWk, ∞ (Sv,Rm) per ogni interok sono fortemente dense inGSBVp(Ω,Rm), nel senso che ogni funzioneu∈GSBVp(Ω,Rm) è approssimata inLp(Ω,Rm) da una successione di funzioni {vj}j∈N con la regolaritá descritta tali che i gradienti approssimati ∇vjconvergono inLp(Ω,Rnm) al gradiente approssimato ∇u e la misura (n−1)-dimensionale degli insiemi di saltoSvjconverge alla misura (n−1)-dimensionale diSu. La struttura diSvpuó essere migliorata nel caso in cuip≤2.AbstractLet Ω be an open and bounded subset ofRn with locally Lipschitz boundary. We prove that the functionsv∈SBV(Ω,Rm) whose jump setSvis essentially closed and polyhedral and which are of classWk, ∞ (Sv,Rm) for every integerk are strongly dense inGSBVp(Ω,Rm), in the sense that every functionu inGSBVp(Ω,Rm) is approximated inLp(Ω,Rm) by a sequence of functions {vk{j∈N with the described regularity such that the approximate gradients ∇vjconverge inLp(Ω,Rnm) to the approximate gradient ∇u and the (n−1)-dimensional measure of the jump setsSvj converges to the (n−1)-dimensional measure ofSu. The structure ofSv can be further improved in casep≤2.

[1]  Andrea Braides,et al.  Non-local approximation of the Mumford-Shah functional , 1997 .

[2]  Irene Fonseca,et al.  Regularity results for anisotropic image segmentation models , 1997 .

[3]  L. Ambrosio Existence theory for a new class of variational problems , 1990 .

[4]  Luigi Ambrosio,et al.  The Space SBV(Ω) and Free Discontinuity Problems , 1993 .

[5]  Jean-Michel Morel,et al.  A variational method in image segmentation: Existence and approximation results , 1992 .

[6]  Luigi Ambrosio,et al.  A new proof of the SBV compactness theorem , 1995 .

[7]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[8]  L. Ambrosio Variational problems in SBV and image segmentation , 1989 .

[9]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[10]  L. Evans Measure theory and fine properties of functions , 1992 .

[11]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[12]  E. D. Giorgi,et al.  Existence theorem for a minimum problem with free discontinuity set , 1989 .

[13]  H. Fédérer Geometric Measure Theory , 1969 .

[14]  M. Carriero,et al.  $S^k$-valued maps minimizing the $L^p$ norm of the gradient with free discontinuities , 1991 .

[15]  I. Fonseca,et al.  Regularity results for equilibria in a variational model for fracture , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[16]  L. Ambrosio On the lower semicontinuity of quasiconvex integrals in SBV W , R k , 1994 .

[17]  W. Ziemer Weakly differentiable functions , 1989 .

[18]  Jean-Michel Morel,et al.  Variational methods in image segmentation , 1995 .