Motion of a rigid body in a compressible fluid with Navier-slip boundary condition

Abstract. In this work, we study the motion of a rigid body in a bounded domain which is filled with a compressible isentropic fluid. We consider the Navier-slip boundary condition at the interface as well as at the boundary of the domain. This is the first mathematical analysis of a compressible fluid-rigid body system where Navier-slip boundary conditions are considered. We prove existence of a weak solution of the fluid-structure system up to collision.

[1]  E. Feireisl,et al.  On the motion of several rigid bodies in an incompressible non-Newtonian fluid , 2008 .

[2]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[3]  Giovanni P. Galdi,et al.  Chapter 7 – On the Motion of a Rigid Body in a Viscous Liquid: A Mathematical Analysis with Applications , 2002 .

[4]  D. Serre,et al.  Chute libre d’un solide dans un fluide visqueux incompressible. existence , 1987 .

[5]  Eduard Feireisl,et al.  On the Motion of Rigid Bodies in a Viscous Compressible Fluid , 2003 .

[6]  Matthias Hieber,et al.  Lp-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids , 2012 .

[7]  M. Boulakia,et al.  A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations , 2009 .

[8]  Bernhard H. Haak,et al.  Mathematical analysis of the motion of a rigid body in a compressible Navier–Stokes–Fourier fluid , 2017, Mathematische Nachrichten.

[9]  Takéo Takahashi,et al.  Stabilization of a rigid body moving in a compressible viscous fluid , 2019, Journal of Evolution Equations.

[10]  David G'erard-Varet,et al.  The influence of boundary conditions on the contact problem in a 3D Navier–Stokes flow , 2013, 1302.7098.

[11]  C. Conca,et al.  Motion of a rigid body in a viscous fluid , 1999 .

[12]  Benoît Desjardins,et al.  Existence of Weak Solutions for the Motion of Rigid Bodies in a Viscous Fluid , 1999 .

[13]  E. Feireisl,et al.  On the Existence of Globally Defined Weak Solutions to the Navier—Stokes Equations , 2001 .

[14]  Matthias Hieber,et al.  The $L^p$-approach to the fluid-rigid body interaction problem for compressible fluids , 2015 .

[15]  M. Hillairet Lack of Collision Between Solid Bodies in a 2D Incompressible Viscous Flow , 2007 .

[16]  M. Tucsnak,et al.  Global Weak Solutions¶for the Two-Dimensional Motion¶of Several Rigid Bodies¶in an Incompressible Viscous Fluid , 2002 .

[17]  B. Desjardins,et al.  On Weak Solutions for Fluid‐Rigid Structure Interaction: Compressible and Incompressible Models , 1999 .

[18]  H. K. Moffatt Viscous and resistive eddies near a sharp corner , 1964, Journal of Fluid Mechanics.

[19]  Matthieu Hillairet,et al.  Collisions in Three-Dimensional Fluid Structure Interaction Problems , 2009, SIAM J. Math. Anal..

[20]  A. Novotný,et al.  Introduction to the Mathematical Theory of Compressible Flow , 2004 .

[21]  Chao Wang,et al.  Strong solutions for the fluid-solid systems in a 2-D domain , 2014, Asymptot. Anal..

[22]  D. Gérard-Varet,et al.  Regularity Issues in the Problem of Fluid Structure Interaction , 2008, 0805.2654.

[23]  E. Feireisl,et al.  Singular Limits in Thermodynamics of Viscous Fluids , 2009 .

[24]  Š. Nečasová,et al.  Weak-strong uniqueness for the compressible fluid-rigid body interaction , 2019, Journal of Differential Equations.

[25]  Peter Kukučka On the existence of finite energy weak solutions to the Navier–Stokes equations in irregular domains , 2009 .

[26]  Š. Nečasová,et al.  The motion of the rigid body in the viscous fluid including collisions. Global solvability result , 2017 .

[27]  J. Neustupa,et al.  A Weak Solvability of the Navier-Stokes Equation with Navier’s Boundary Condition Around a Ball Striking theWall , 2010 .

[28]  Eduard Feireisl On the motion of rigid bodies in a viscous incompressible fluid , 2003 .

[29]  V. N. Starovoitov,et al.  ON A MOTION OF A SOLID BODY IN A VISCOUS FLUID. TWO-DIMENSIONAL CASE. , 1999 .

[30]  Max Gunzburger,et al.  Global Existence of Weak Solutions for Viscous Incompressible Flows around a Moving Rigid Body in Three Dimensions , 2000 .

[31]  Takéo Takahashi,et al.  Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain , 2003, Advances in Differential Equations.

[32]  Matthieu Hillairet,et al.  Existence of Weak Solutions Up to Collision for Viscous Fluid‐Solid Systems with Slip , 2012, 1207.0469.