Effect of sodium chloride on a lipid bilayer.

Electrostatic interactions govern structural and dynamical properties of membranes and can vary considerably with the composition of the aqueous buffer. We studied the influence of sodium chloride on a pure POPC lipid bilayer by fluorescence correlation spectroscopy experiments and molecular dynamics simulations. Increasing sodium chloride concentration was found to decrease the self-diffusion of POPC lipids within the bilayer. Self-diffusion coefficients calculated from the 100 ns simulations agree with those measured on a millisecond timescale, suggesting that most of the relaxation processes relevant for lipid diffusion are faster than the simulation timescale. As the dominant effect, the molecular dynamics simulations revealed a tight binding of sodium ions to the carbonyl oxygens of on average three lipids leading to larger complexes with reduced mobility. Additionally, the bilayer thickens by approximately 2 A, which increases the order parameter of the fatty acyl chains. Sodium binding alters the electrostatic potential, which is largely compensated by a changed polarization of the aqueous medium and a lipid dipole reorientation.

[1]  K. Jacobson,et al.  Lateral diffusion in membranes. , 1983, Cell motility.

[2]  T. James,et al.  Lateral diffusion of the phospholipid molecule in dipalmitoylphosphatidylcholine bilayers. An investigation using nuclear spin--lattice relaxation in the rotating frame. , 1978, Biochemistry.

[3]  J. Seelig,et al.  Lipid conformation in model membranes and biological membranes , 1980, Quarterly Reviews of Biophysics.

[4]  Herman J. C. Berendsen,et al.  MOLECULAR-DYNAMICS SIMULATION OF A BILAYER-MEMBRANE , 1982 .

[5]  Watt W Webb,et al.  Biological and chemical applications of fluorescence correlation spectroscopy: a review. , 2002, Biochemistry.

[6]  Carlos F. Lopez,et al.  Dynamical properties of a hydrated lipid bilayer from a multinanosecond molecular dynamics simulation. , 2001, Biophysical journal.

[7]  J. Korlach,et al.  Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. , 1999, Cytometry.

[8]  Werner Baumgartner,et al.  Characterization of Photophysics and Mobility of Single Molecules in a Fluid Lipid Membrane , 1995 .

[9]  W. Webb,et al.  Thermodynamic Fluctuations in a Reacting System-Measurement by Fluorescence Correlation Spectroscopy , 1972 .

[10]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[11]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[12]  H. Amenitsch,et al.  Salt-induced phase separation in the liquid crystalline phase of phosphatidylcholines , 2001 .

[13]  H. Berendsen,et al.  Surface binding of alamethicin stabilizes its helical structure: molecular dynamics simulations. , 1999, Biophysical journal.

[14]  E. Sackmann,et al.  Molecular dynamics of lipid bilayers studied by incoherent quasi-elastic neutron scattering , 1992 .

[15]  W. Webb,et al.  Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. , 2002, Biophysical journal.

[16]  Måns Ehrenberg,et al.  Rotational brownian motion and fluorescence intensify fluctuations , 1974 .

[17]  H. Heerklotz,et al.  Surface area per molecule in lipid/C12En membranes as seen by fluorescence resonance energy transfer , 1994, Journal of Fluorescence.

[18]  D P Tieleman,et al.  A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. , 1997, Biochimica et biophysica acta.

[19]  R M Venable,et al.  Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. , 1993, Science.

[20]  W. Vaz,et al.  Chapter 6 - Lateral Diffusion in Membranes , 1995 .

[21]  O. Zschörnig,et al.  The effect of metal cations on the phase behavior and hydration characteristics of phospholipid membranes. , 2002, Chemistry and physics of lipids.

[22]  D. Marsh,et al.  Unconstrained optimization method for interpreting the concentration and temperature dependence of the linewidths of interacting nitroxide spin labels. Application to the measurement of translational diffusion coefficients of spin-labeled phospholipids in membranes , 1987 .

[23]  W. Webb,et al.  Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. , 1976, Biophysical journal.

[24]  H. Khorana,et al.  Rapid long-range proton diffusion along the surface of the purple membrane and delayed proton transfer into the bulk. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[25]  U. Essmann,et al.  Dynamical properties of phospholipid bilayers from computer simulation. , 1999, Biophysical journal.

[26]  K. Jacobson,et al.  Direct observation of brownian motion of lipids in a membrane. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[27]  H Schindler,et al.  Imaging of single molecule diffusion. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Patra,et al.  Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. , 2003, Biophysical journal.

[29]  E. Sackmann,et al.  Hydration dependence of chain dynamics and local diffusion in L-alpha-dipalmitoylphosphtidylcholine multilayers studied by incoherent quasi-elastic neutron scattering. , 1995, Biophysical journal.

[30]  Sagar A. Pandit,et al.  Molecular dynamics simulation of dipalmitoylphosphatidylserine bilayer with Na+ counterions. , 2002, Biophysical journal.

[31]  G. Cevc,et al.  Membrane electrostatics. , 1990, Biochimica et biophysica acta.

[32]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[33]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[34]  References , 1971 .

[35]  W. Vaz,et al.  Microscopic versus macroscopic diffusion in one-component fluid phase lipid bilayer membranes. , 1991, Biophysical journal.

[36]  O. Berger,et al.  Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. , 1997, Biophysical journal.

[37]  K. Schulten,et al.  Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid crystal phase , 1993 .

[38]  E. Sackmann,et al.  Chapter 5 - Physical Basis of Self-Organization and Function of Membranes: Physics of Vesicles , 1995 .

[39]  P. Saffman,et al.  Brownian motion in biological membranes. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[41]  C. Lüpfert,et al.  Influence of anions and cations on the dipole potential of phosphatidylcholine vesicles: a basis for the Hofmeister effect. , 1999, Biophysical journal.

[42]  Akihiro Kusumi,et al.  Phospholipids undergo hop diffusion in compartmentalized cell membrane , 2002, The Journal of cell biology.

[43]  T. Heimburg,et al.  The effect of lipid demixing on the electrostatic interaction of planar membranes across a salt solution. , 2003, Biophysical journal.

[44]  J. Riesle,et al.  Proton migration along the membrane surface and retarded surface to bulk transfer , 1994, Nature.

[45]  C. Wade,et al.  Lipid lateral diffusion by pulsed nuclear magnetic resonance. , 1979, Biochemistry.

[46]  Allan Rosencwaig,et al.  Dynamic Properties of , 1972 .

[47]  J. Tabony,et al.  Quasielastic neutron scattering measurements of fast local translational diffusion of lipid molecules in phospholipid bilayers. , 1991, Biochimica et biophysica acta.

[48]  S. Lowen The Biophysical Journal , 1960, Nature.

[49]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[50]  J. Korlach,et al.  Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[51]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[52]  H Schindler,et al.  Single-molecule microscopy on model membranes reveals anomalous diffusion. , 1997, Biophysical journal.

[53]  G. Feigenson,et al.  Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. , 2001, Biophysical journal.