Center of mass encoding: a self-adaptive representation with adjustable redundancy for real-valued parameters

In this paper we describe a new class of representations for real-valued parameters called Center of Mass Encoding (CoME). CoME is based on variable length strings, it is self-adaptive, and it permits the choice of the degree of redundancy of the genotype-to-phenotype map and the choice of the distribution of the redundancy over the space of phenotypes. We first describe CoME and then proceed to test its performance and compare it with other representations and with a state-of-the-art evolution strategy. We show that CoME performs well on a large set of test functions. Furthermore, we show how CoME adapts the granularity of its discretization on functions defined over nonuniformly scaled domains.

[1]  J. Tukey,et al.  Variations of Box Plots , 1978 .

[2]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[3]  L. Darrell Whitley,et al.  Delta Coding: An Iterative Search Strategy for Genetic Algorithms , 1991, ICGA.

[4]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[5]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[6]  Robert J. Marks,et al.  Dynamic fuzzy control of genetic algorithm parameter coding , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[7]  David B. Fogel,et al.  Evolution-ary Computation 1: Basic Algorithms and Operators , 2000 .

[8]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 : Advanced Algorithms and Operators , 2000 .

[9]  Franz Rothlauf,et al.  Representations for genetic and evolutionary algorithms , 2002, Studies in Fuzziness and Soft Computing.

[10]  William H. Press,et al.  Numerical recipes in C , 2002 .

[11]  Young-Doo Kwon,et al.  Convergence enhanced genetic algorithm with successive zooming method for solving continuous optimization problems , 2003 .

[12]  Annie S. Wu,et al.  The Proportional Genetic Algorithm: Gene Expression in a Genetic Algorithm , 2002, Genetic Programming and Evolvable Machines.

[13]  N. Schraudolph,et al.  Dynamic Parameter Encoding for genetic algorithms , 2004, Machine Learning.

[14]  Claudio Mattiussi,et al.  Evolutionary synthesis of analog networks , 2005 .

[15]  L. Darrell Whitley,et al.  Comparing the Niches of CMA-ES, CHC and Pattern Search Using Diverse Benchmarks , 2006, PPSN.