Infinitely many radial solutions for Kirchhoff-type problems in RN

Abstract In this paper, we concern with a class of Kirchhoff-type problems in R N . By using the Fountain Theorem we obtain three existence results of infinitely many radial solutions for the problem.

[1]  Kanishka Perera,et al.  Nontrivial solutions of Kirchhoff-type problems via the Yang index , 2006 .

[2]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[3]  Xiaoming He,et al.  Infinitely many positive solutions for Kirchhoff-type problems , 2009 .

[4]  M. Willem Minimax Theorems , 1997 .

[5]  To Fu Ma,et al.  Positive solutions for a quasilinear elliptic equation of Kirchhoff type , 2005 .

[6]  S. Spagnolo,et al.  Global solvability for the degenerate Kirchhoff equation with real analytic data , 1992 .

[7]  Stefano Panizzi,et al.  On the Well-Posedness of the Kirchhoff String , 1996 .

[8]  Michel Chipot,et al.  Some remarks on non local elliptic and parabolic problems , 1997 .

[9]  Bitao Cheng,et al.  Existence results of positive solutions of Kirchhoff type problems , 2009 .

[10]  Jacques-Louis Lions,et al.  On Some Questions in Boundary Value Problems of Mathematical Physics , 1978 .

[11]  Kanishka Perera,et al.  Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow , 2006 .

[12]  Marcelo M. Cavalcanti,et al.  Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation , 2001, Advances in Differential Equations.

[13]  Jaime E. Muñoz Rivera,et al.  Positive solutions for a nonlinear nonlocal elliptic transmission problem , 2003, Appl. Math. Lett..

[14]  Anmin Mao,et al.  Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition , 2009 .